Chevron Left
Вернуться к Поиск структуры в данных

Отзывы учащихся о курсе Поиск структуры в данных от партнера Московский физико-технический институт

4.7
звезд
Оценки: 1,374
Рецензии: 150

О курсе

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Лучшие рецензии

PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

Фильтр по:

1–25 из 144 отзывов о курсе Поиск структуры в данных

автор: Шаланкин М Д

Mar 14, 2019

Курс достаточно старый, возникает много конфликтов версий, данные не обновляют. Ещё пока релевантная информация. UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

автор: Мария Е Ч

Jul 25, 2018

Курс всем хорош, но три звезды только за задание с анализом текстов, где нужна была устаревшая версия gensim. Об этом не предупредили в тексте задачи, а грейдер не принимал ответы, выдаваемые новой версией. Потратила много времени.

автор: Artem G

Dec 22, 2019

Все круто! Но хотелось бы использования более новых версий библиотек по тематическому моделированию!

автор: Konstantin A

Oct 31, 2018

Хорошая теоретическая основа, видео. Но задания все пора обновлять. Используются старые версии библиотек. В видео по установке и работе с библиотеками сильно устаревшая информация. Впрочем, это не сильно мешает понять тематическое моделирование.

автор: Mamedov M

Nov 19, 2019

Большая-большая работа. Спасибо преподавателям, МФТИ, Яндексу за возможность изучать предмет таким невероятно крутым способом

автор: Рогозин А

Apr 09, 2020

Большинство лекторов понятно объясняют материал - иными словами, говорят на человеческом языке. Домашние задания позволяют пощупать разнообразные методы, которые на самом деле применяются на практике - и это круто.

Проблемы с восприятием материала возникают только от лекций Воронцова про тематическое моделирование, так как он большую часть времени кидается формулами и матаном без плавного перехода к ним. Сразу заметен старый стиль преподавания из университета. Благо тема обработки текста лучше раскроется в пятом курсе этой специальности уже с другим лектором)

P.S. BigARTM - тихий ужас, так и не удалось его установить(

автор: Kapitanov A

Oct 29, 2019

Курс интересный, но к сожалению есть много жирных минусов:

1) Последняя неделя - преподается скомканно и сумбурно. Лекций много, а практические материалы - недоработаны

2) Задание по программированию на 4 неделе (с gensim) - не адаптировано под современные версии. Для решения задач требуются танцы с бубнами и установка отдельных окружений со старыми версиями (правильную ещё и поискать надо!)

3) Последнее задание, которое не влияет на оценку (Постнауки) также неадаптировано и сделано на коленке. BigARTM это просто ужас. Местами вообще не понятно, что от обучающегося хотят.

4) Сама концепция использоваться старые и заброшенные библиотеки - так себе. В итоге у человека остается осадок в виде "как танцевать с бубном", а не как понижать размерность, кластеризовать данные и прочее.

5) В тетрадках на Python 3 в шапке указывают на каких версиях библиотек проверены задачи. Но по факту - они не проверены. В частности, так и не удалось победить NaN-ы в seaborn pairplot (при этом бОльшая часть сокурсников просто скопипастила чужие решения).

В остальном - курс неплохой, без этой части в ML и DS просто никуда. Отдельное спасибо Соколову Е. и Воронцову К. за качественную подачу материала.

автор: Задойный А

Jun 10, 2016

После 2 курса здесь почти отдыхаешь (но именно что почти, многие задачи гораздо коварнее, чем кажутся на первый взгляд).

Курс не требует материала из 2, а вот 1 очень пригодится (разве что вы уже хорошо знакомы с python и не успели забыть линейную алгебру и матан со времён ВУЗа).

Курс не для новичков. С наскока не пройти. Но примеры, которые даются в курсе очень жизненные, а потому чувствуешь, что это не сухая академическая наука, а настоящая жизнь, то что применяется каждый день вокруг тебя почти везде: поиск, рекомендации фильмов, контекстная реклама в почте, «с этим товаром покупают» и «выбор редакции».

Отдельно довольно занятно то как с помощью описанных методов удаётся оптимизировать пространство признаков и превратить огромные массивы «информационного мусора» во вполне понятные и интерпретируемые даже человеческим глазом данные, графики, гистограммы, схемы…

Алексей З.

автор: Alexander

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

автор: Валерия Р

Mar 29, 2018

Для меня как новичка в Питоне, было увлекательно, и временами сложно, но оно тог стоило, спасибо!

автор: Timur B

May 13, 2018

Первые три недели интересные и методы рассмотрены важные. Тематическое моделирование, на мой взгляд, штука достаточно специфичная и многим она не понадобится совсем. Хотелось бы чего-то более общего. А так курс неплохой.

автор: Petr K

Jan 10, 2019

По-моему, отличный курс.

Лично для меня последняя неделя по тематическому моделированию оказалась очень длительной для изучения (потратил пару недель, тогда как первые три недели прошел меньше чем за неделю). В принципе, совсем не обязательно было углубляться, но я не устоял перед соблазном и поразбирался с EM-алгоритмом на будущее.

Курс рекомендую - отлично дополняет второй курс про обучение с учителем. Посмотрим, что будет дальше.

автор: Кирилл В

Jun 02, 2017

Хороший курс, все очень понравилось!

Отличное введение в методы кластеризации, отбор признаков, матричные разложения, поиск выбросов, визуализацию и тематическое моделирование.

Немного не хватило практики на 2 и 3 неделях, что, однако, компенсируется очень подробными теоретическими материалами.

Хочу сказать спасибо организаторам и преподавателям! Каждый следующий курс специализации радует все больше!

автор: Natalia A

Jan 09, 2018

Курс замечательный, хорошие задания, подводит обновляемость грейдера с учетом новых версий библиотек, и некоторые исполняемые ноутбуки не всегда корректно работают с новыми версиями библиотек. Хотелось бы большем мобильности в обратной связи.

Мне курс в целом понравился, коментарии коллег на форуме курсеры и в Slack помогают разобраться в некоторых тонкостях заданий и тем.

Спасибо!

автор: Рядовиков А В

Sep 14, 2018

Курс достаточно насыщен. Понятно, что что трудно сделать его полнее без увеличения длительности. Из пожеланий, хотелось бы больше ссылок на описания алгоритмов. Возможно, есть статьи на русском языке. Да, просьба здесь и дальше: в конспектах указывать англоязычные термины и ссылки на базовые статьи. Спасибо))!

автор: Горячев В Д

Apr 22, 2019

Все остальное отлично! Преподаватели хорошо рассказывают

Последнее задание c BiaARTM не удалось сделать, т.к. не смог установить данную библиотеку.

И ответы в некоторых заданиях пора изменить, т.к. бывает, что ответы Python 3 не принимаются(рассчитано ведь на Python 2.7)

автор: Радионов А

Sep 20, 2017

Отличный курс. Порадовало полномасштабное объяснение того, как и для чего применяется кластеризация.

Тот факт, что затронули байесовские методы, тоже порадовал: они достаточно необычны, и предоставленное здесь объяснение позволит не потеряться в них в дальнейшем.

автор: Nadezhda K

Dec 09, 2019

Все как всегда было очень интересно и увлекательно! Не без мелких косяков конечно с заданиями, но вдвойне мотивировало учиться с ребятами искренне интересующимися специализацией. Без сомнения пройду оставшиеся курсы специализации и жду новых интересных заданий

автор: Максутов

Dec 22, 2016

Было здорово. Особенно интересным в плане контента показались кластеризация и визуализация.

Рекомендую курс всем начинающим data scientist'ам. Преподаватели последовательно и интересно излагали материал, а задания были несложными, но контролирующими понимание.

автор: Pavel S

Aug 10, 2017

Отличный курс! Тематика и содержание полностью соответствуют аннотации. Дает достаточно глубокие теоретические и практические навыки. Формирует прочную базу для дальнейшего самостоятельного освоения предметной области.

Спасибо авторам!!!

автор: Ivan S

Sep 07, 2018

Замечательный курс! Очень помог в изучении и освоении алгоритмов обучения без учителя. Теперь чувствую себя более уверенно в работе с данными и их обработкой. Может, смогу сделать что-нибудь прикладное в данной области.

автор: Вернер А И

Sep 12, 2017

Очень интересный и познавательный курс. Материал изложен доступно и достаточно подробно. Большое спасибо команде курса. Единственный недостаток - очень сложное второе задание по программированию за последнюю неделю.

автор: Anatoly R

Jun 27, 2018

пожелание, чтобы везде четко прописывались версии библиотек, используемых в демонстрациях.иначе сложно разобраться, где результат не воспроизводится из-за версии, а где ошибка из-за зависимостей в разных версияъ

автор: Шляхов А В

Jul 09, 2020

Отличный курс!

Мне понравился, поскольку задачи подобного характера зачастую нестандартные.

Объяснение тоже понравилось, хоть в 1 задании грейдер ожидал результат по итогу работы более старой версии библиотеки)

автор: Ленар С

Feb 08, 2018

Было бы хорошо, если бы создатели курса писали, какими версиями библиотек надо пользоваться, а то на последней неделе запарился с третьим заданием, которое правильно считает только определенная версия gensim