Chevron Left
Вернуться к Unsupervised Learning, Recommenders, Reinforcement Learning

Отзывы учащихся о курсе Unsupervised Learning, Recommenders, Reinforcement Learning от партнера

Оценки: 585

О курсе

In the third course of the Machine Learning Specialization, you will: • Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection. • Build recommender systems with a collaborative filtering approach and a content-based deep learning method. • Build a deep reinforcement learning model. The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. In this beginner-friendly program, you will learn the fundamentals of machine learning and how to use these techniques to build real-world AI applications. This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field. This 3-course Specialization is an updated and expanded version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start....

Лучшие рецензии


16 сент. 2022 г.

great introduction to machine learning. I tried to self study before but it didn't work and thanks to this course I did understand now a bunch of things I cant wrap up my head with. Thank you for this


26 сент. 2022 г.

clear, concise, well explained and best labs. this course is best starter for machine learning ( unsupervised).

thank you for Andrew Sir, and whole team for sharing your knowledge.

Фильтр по:

1–25 из 121 отзывов о курсе Unsupervised Learning, Recommenders, Reinforcement Learning

автор: Yuriy G

9 авг. 2022 г.

автор: Richard G

4 авг. 2022 г.

автор: Eduardo A

29 июля 2022 г.

автор: ירדן א

31 авг. 2022 г.

автор: Long C

23 сент. 2022 г.

автор: Anupam

30 нояб. 2022 г.

автор: Diego C M

29 июля 2022 г.

автор: Nathan B

20 авг. 2022 г.

автор: Matthias K

4 нояб. 2022 г.

автор: Fabrice L

11 нояб. 2022 г.

автор: Vidya S

10 окт. 2022 г.

автор: James P

1 авг. 2022 г.

автор: Austin S

5 авг. 2022 г.

автор: Mohamed J

21 окт. 2022 г.

автор: Rizal m M P

30 сент. 2022 г.

автор: Devinder K

27 окт. 2022 г.

автор: AustinQi

31 июля 2022 г.

автор: Baiwei Z

12 авг. 2022 г.

автор: Jaime A C

29 нояб. 2022 г.

автор: Sudip S C

1 окт. 2022 г.

автор: Ammar K

28 нояб. 2022 г.

автор: Boris A

24 сент. 2022 г.

автор: Serban G

11 авг. 2022 г.

автор: Ogheneochuko P

27 сент. 2022 г.

автор: anup

24 сент. 2022 г.