Chevron Left
Вернуться к Обучение на размеченных данных

Отзывы учащихся о курсе Обучение на размеченных данных от партнера Московский физико-технический институт

4.8
звезд
Оценки: 2,572
Рецензии: 343

О курсе

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Лучшие рецензии

RN
20 янв. 2017 г.

Один из лучших курсов по обучению на размеченных данных. Немного расстраивали несбалансированность сложности домашних заданий и промежуточных проверок правильности подготовки данных в заданиях.

AG
14 нояб. 2019 г.

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

Фильтр по:

26–50 из 327 отзывов о курсе Обучение на размеченных данных

автор: Задойный А

10 июня 2016 г.

Очень непростой, но интересный курс.

Если вам было сложно на 1 курсе специализации, то тут вероятно потребуется гораздо больше работать (в том числе самостоятельно).

Критичной будет успех на 3 неделе – там очень большая и непростая курсовая работа, многие этапы которой даются с огромным трудом. В случае возникновения трудностей стоит поискать ответы на форуме.

Удивительным откровением стала неделя по нейросетям. Как оказывается просто они устроены. Когда в университете через определение «персептрона» нейросети читали, только путали. Не надо никаких муравьёв, аналогий с живыми системами – формула тут очень простая и объясняет всё гораздо проще, чем неуместные аналогии.

Множество методов, показанных в курсе буквально завораживают – для практически любой задачи можно найти что-нибудь «своё». Так и хочется броситься решать практические задачки, кажется, что ты теперь всемогущий (градиентный бустинг в какой-то момент вызывает ассоциации с BFG9000, для тех, кто понимает).

Мне потребовалось больше 2 месяцев – явно не хватало подготовки (как в плане python, так и по математике).

Но самое главное, что курс очень интересный!

Алексей З.

автор: Петренко А

11 мар. 2020 г.

Для начала, выражаю благодарность авторам за курс.

Курс позволяет получить базовое представление об основных алгоритмах машинного обучения с теоретической и программной (очень хорошо разобраны модели из sklearn-библиотеки) стороны, особенно если не лениться и задавать себе вопросы по ходу лекций / упражнений и находить на них ответы. При таком подходе можно получить знания значительно глубже. Однако слушателям, слабо владеющим высшей математикой, тервером, матстатом придется не сладко. Основная часть теории на курсе дается так, будто слушатель все это уже знает или знал, но просто подзабыл и нужно всего-то сакцентировать его внимание на некоторых вещах. Лично мне потребовалось значительно больше 5 недель, чтобы завершить курс, а параллельно подтянуть тервер, матстат, ...

автор: Николай К

3 авг. 2020 г.

Даже слабая 5-я неделя не испортила впечатлений. Отличный курс, в большинстве своём очень интересные задания. Соколов - боженька! Получаю удовольствие от его лекций сравнимое с прослушиванием любимой музыки. Просто невероятно.

автор: Timur B

21 апр. 2018 г.

Хороший курс, позволяющий ознакомиться в алгоритмами. Дает примерное представление как работают алгоритмы, какие вообще алгоритмы бывают и как их нужно использовать в sklearn. Соколов - "explanator" from the God.

автор: Zakharenkov A

21 июля 2017 г.

Курс просто фантастика. Отличное преподавание, много нового. Столько что еще переваривать и переваривать. Немного сжата последняя неделя и на нейронные сети нужно больше времени. Спасибо.

автор: Чайников К

9 мая 2020 г.

Было трудно, но я наконец освоил этот курс. Были бессонные ночи и дикие негодования о не принятии системой моих ответов, но после того как я это прошёл, я рад что учился на этом курсе.

автор: Burobin I V

10 июля 2019 г.

Курс интересный. Правда местами складывалось впечатление что переход от простых вещей к более сложным отсутствует.

автор: Maria L

24 июля 2020 г.

Спасибо за курс! В целом несмотря на минусы курс очень полезен для тех, кто уже имеет базовые навыки программирования, рекомендую! Плюсы курса/что понравилось: 1)объяснения преподавателей Е Соколова, Э Драль. 2) Недели 1, 2,4 обучения (курс поможет понять деревья решений и бустинг и с нулевыми знаниями по теме! ) 3) полезные практические задания в питоне

Минусы: 1) Вялые лекции Кантора, преподаватель убивает интерес к обучению. 2) Неделя 5 обучения - лучше убрать про нейронки, оставив ссылки для изучения. 3) В начале курса не объясняют про скачивание файлов json для питона 3 - пришлось узнать это в группе Телеграмм. 4) Излишняя перегруженность теорией в неделях 3 и 5. Итоги: Курс имеет недостатки, но очень полезен для развития в Data Science. Спасибо!

автор: Usenko S

17 нояб. 2017 г.

В целом хорошо, но теория далеко не всегда очевидна. Ее изложения, конечно, хватает для того чтобы сдать тесты, однако цельная картина не всегда складывается. Сложность заданий нелинейная: что-то с первого раза без ошибок делается, а что-то только после прочтения форума. Есть проблема с принятием ответов в практике. Но курс хорош практикой и вовлекает в поиск способов решения возникающих проблем.

автор: Alexander A

22 мар. 2020 г.

Достаточно информативный и интересный курс. Но версия python 2.7 по тихоньку устаревает и некоторые задачи уже трактуются не корректно, не смотря на то что в самом начале курса это оговаривалось. Я бы предложил обновить курс под python 3

автор: Сокольцов В Ю

12 июня 2017 г.

Я отдаю деньги, а потом мне еще и ребусы в заданиях разгадывать. Если вы уж делаете этот курс для людей, которые успешно работаю в сфере анализа данных - так вы хотя бы пишите об этом. Не все ваши студенты закончили МФТИ!

автор: Daniel B

11 мая 2019 г.

Интересный курс, но сложность заданий не всегда соответствует излагаемому материалу, да и порядок изложения не всегда логичен. Хорошо, что у sklearn подробная доступная документация :)

автор: Андрей А Н

17 сент. 2017 г.

Отличный курс для общего понимания Обучения на размеченных данных. Но иногда бывает резкое углубление в математику, что под силу не для всех.

автор: Фомин А Г

17 июня 2018 г.

Было трудно

автор: Zamoshin P

4 окт. 2019 г.

Из-за вечного разгадывания ребусов в заданиях (а какие параметры они не указали на этот раз) пропадает всякое желание заниматься курсом. Боюсь, продлять еще раз его уже не буду. Тем не менее, спасибо.

автор: Абраменко Е Ю

10 апр. 2021 г.

Бесят баги в заданиях по программированию. Эти вещи уже давно описаны пользователями на форуме, но реакции ноль. Выглядит как неуважение к учащимся.

автор: Kozlovtsev A

28 июля 2016 г.

Хороший курс. Поначалу казалось, что темы освещаются слишком уж "по вершкам", но по окончании курса, понял, что глубже и не нужно - весь необходимый практический минимум курс дает, а за теорией лучше все же обратиться к соответствующей литературе (или к специализированным курсам).

Теперь придирки :) В некоторых практических заданиях и тестах куча времени уходит на вычитывание мелких нюансов в условии. То есть написанный код верен, но грейдер не принимает ответ, потому что, например, во всех заданиях ранее мы стандартно делили выборку случайно, а в этом задании нам нужны именно последние 25%, на мой взгляд это требование в задании нужно как минимум выделять жирным шрифтом. Таких мест в задачах мало, но именно в силу своей внезапности, они сильно портят настроение.

В целом же, все понравилось, огромное спасибо преподавателям и всей команде курса!

автор: milo h

17 мая 2016 г.

Курс неплохой, интересный. Много практики. Нагрузка, все же, довольно высокая, особенно для работающего человека, поэтому бывает тяжело. Особенно огорчают ошибки в грейдере (на третьей деле, если не ошибаюсь, столкнулся), из-за них убивается действительно гигантское количество времени. Еще один минус - некоторые моменты в лекциях освещаются очень поверхностно, а порой на слушателя просто вываливаются большие формулы, а пояснение дано к ним в двух словах. В этом плане классический ml class с Andrew Ng мне понравился больше, т.к. теория там дана была более подробно, но зато было меньше практики (а тут плюс текущему курсу).

Например, если в теоретическом материале преподаватель скажет почему функция потерь, например, log-loss получается именно такой, то этот материал станет интересней в квадрате! :)

Тем не менее спасибо, было интересно.

автор: Колобов И А

13 сент. 2019 г.

Курс отличный! Правда, пятая неделя оказалась достаточно непонятной в плане консистентности материала относительно других недель, особенно распределения в рамках наивного байеса. В целом, отмечу плюсом для себя именно наличие похожих заданий в разных неделях - построение линейных моделей, к примеру - уже доводится до определенного автоматизма и точно не забудется. Также порадовали вставки разных особенных функций в синтаксисе питона (например, zip или concat) - то есть не просто повторение и копипаста, а освоение и особенностей языка. В целом, конечно, теоретические моменты со временем, если не работать непосредственно с ними часто, могут забыться, но хотя бы стало меньше каши в голове относительно тех или иных методов. Спасибо!

автор: Павельев А В

12 янв. 2020 г.

Хороший курс. Сформировал понимание, какие задачи решает обучение на размеченных данных, познакомил с достаточно разными моделями, применимыми на практике, дал много важной информации по библиотеке sklearn.

Были затронуты достаточно важные темы о подборе гиперпараметров модели и контроле качества на отложенной выборке/кросс-валидации.

Несколько огорчила неактуальность библиотеки для задания по нейронным сетям, которые в этом курсе затрагиваются лишь обзорно.

В целом очень благодарен команде курса за проделанную работу. Это в каком-то смысле уникальные и актуальные знания и умения, которые тяжело получить где-то еще.

Особенно хочется отметить Евгения Соколова, Эмели Драль и Виктора Кантора как замечательных преподавателей.

автор: Kirill V

26 апр. 2017 г.

Прекрасный курс!

Большое спасибо преподавателям за доступное изложение материала! В курсе много практических заданий, которые позволяют потрогать руками различные методы обучения на размеченных данных, что вкупе с хорошей теоретической базой дает слушателям возможность осознанно применять инструменты для решения различных задач по анализу данных. Кстати, отдельно хочется отметить, что преподаватели дают еще и множество практических советов по предобработке данных и применению методов машинного обучения.

Из недостатков: на 5 неделе дается вводное занятие по нейронным сетям. Задание по программированию по этой теме основано на библиотеке pybrain, которая на сегодняшний день является устаревшей.

автор: Valeriia N

31 янв. 2018 г.

The course overall is very good, especially if to read all the additional materials and google things to know more.

The only thing I personally did not like is non-uniformness of different parts. For example, in my opinion, the neural network part was much weaker than others: nothing was easy to understand in the videos and the practical task was just boring. However I need to notice that gradient boosting part and methods review part were really good.

Also a little thing that I did not like is that some of the tasks were in ipynb, and the others were not. It was just a bit imperfect.

Thank you for the course very much! I really enjoyed it and learned the things I did not know before.

автор: Vasiliy Z

8 июня 2016 г.

В курсе подробно разобраны базовые методы машинного обучения с учителем.

Рассмотрены линейные модели, деревья, композиции алгоритмов. Ко всему материалу дана математическая база, практическая реализация на Python с использованием соответствующих библиотек и задачи на закрепление материала.

Много внимания уделено правильно подготовке и работе с данными, рассмотрены различные реальные проблемы и возможные решения, весь материал подкреплен практическими заданиями.

Курс не очень сложный, отлично совмещает практику и теорию, рекомендую всем кто интересуется темой.

автор: Yuriy Z

19 мар. 2020 г.

Лично для меня "Обучение на размеченных данных" был очень информативным курсом. До этого курса единственное что я умел делать на размеченных данных были нейронные сети. Благодаря этому курсу я узнал и попробовал лассо регрессию, ридж регрессию, решающие деревья, случайные леса. Очень сильно удивился увидев использование байесовской статистики для разделения данных. Сразу скажу, что вреия отведенное на курсы для меня оказалось неподйомным и над курсом я просидел значительно дольше чем запланировано. Обучение помогло получить победу на одном с конкурсов.

автор: Тенишев Т В

14 янв. 2021 г.

Это просто замечательный курс по машинному обучению. Не думал, что кто-то может так легко объяснить концепты машинного обучения с горой математических формул. Он конечно, самый объемный из всей специализации, так что после его преодоления можно смело браться за соревнования по data science. Разочаровала тема нейронных сетей, к сожалению - тут создатели курса подкачали и мало понятно. Однако в остальных алгоритмах машинного обучения (линейная регрессия, бинарная классификация, случайный лес градиентный бустинг) - курс отличный и очень глубокий