Автор:   Университет Дьюка

  • Merlise A Clyde

    Преподаватели:    Merlise A Clyde, Professor

    Department of Statistical Science

  • Colin Rundel

    Преподаватели:    Colin Rundel , Assistant Professor of the Practice

    Statistical Science

  • David Banks

    Преподаватели:    David Banks, Professor of the Practice

    Statistical Science

  • Mine Çetinkaya-Rundel

    Преподаватели:    Mine Çetinkaya-Rundel, Assistant Professor of the Practice

    Department of Statistical Science
Основные сведения
Выполнение5-10 hours/week
Язык
English
Как пройти курсЧтобы пройти курс, выполните все оцениваемые задания.
Оценки пользователей
Программа курса

Часто задаваемые вопросы
Как это работает
Задания курса
Задания курса

Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.

Помощь сокурсников
Помощь сокурсников

Общайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.

Сертификаты
Сертификаты

Получите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.

Авторы
Университет Дьюка
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
Стоимость
ПрослушатьПриобрести курс
Получить доступ к материалам курса

Доступен

Доступен

Получить доступ к оцениваемым материалам курса

Недоступен

Доступен

Получить итоговую оценку

Недоступен

Доступен

Earn a Shareable Course Certificate

Недоступен

Доступен

Рейтинги и отзывы
Оценка 4.7 из 5 по 16 отзывам

Thank you very much for teaching me all the statistics courses in the specialization. Although it is an online study, I think I benefit a lot from the course contents, quizzes and problem sets and the training from final projects one by one. Also, I appreciate a lot the feedback from other students in the courses, which gives me more confidence on my study. As a matter of fact, I know I still have a lot of room to improve on my final project, such as consistency of EDA with the later part of my project, assessment on residual plots, real understanding on the trade off between model interpretation and prediction accuracy, etc., which I will improve in my future study and analysis. No matter where and what I will study in the future, I always bring the statistics knowledge and R skills that I learned from my first specialization from professors at Duke University. Thank you.

The Capstone project really helped tie the program together

I think this is a very advisable course as a whole, The capstone offers a good occasion to put into practice what has been learned during the four previous courses and also works as a sort of review.

Great activity!!