Об этом курсе
3.6
Оценки: 100
Рецензии: 27
Специализация
100% online

100% online

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Часов на завершение

Прибл. 17 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 5 hours per week...
Доступные языки

Английский

Субтитры: Английский...
Специализация
100% online

100% online

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Часов на завершение

Прибл. 17 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 5 hours per week...
Доступные языки

Английский

Субтитры: Английский...

Программа курса: что вы изучите

Неделя
1
Часов на завершение
3 ч. на завершение

Using Graphs to Describe Data

In our study of statistics, we learn many methods to help us summarize, analyze, and interpret data with the aim of making informed decisions in an uncertain environment. In this first week we introduce tables and graphs that help us get a handle of data. These tools provide visual support for better decision making. With this in mind, we will guide you through the concept of decisions based on incomplete information. Beginning from here, we will introduce you to the concept of population vs. sample, of parameter vs. statistic and of descriptive statistics vs. inferential statistics. We will then go through the concept of describing data, and we will introduce the idea of creating and interpreting graphs to describe categorical and continuous random variables. ...
Reading
9 видео (всего 42 мин.), 3 тестов
Video9 видео
Introduction - Using graphs to describe data3мин
1. Decision Making in an Uncertain Environment3мин
2. Population and Sample4мин
3. Parameters and Statistics3мин
4. Descriptive and Inferential Statistics11мин
5. Graphs to Describe Numerical Values7мин
6. Shape of a Distribution2мин
Summary2мин
Quiz2 практического упражнения
Quiz: Categorical and Numerical Variables8мин
End of Week Quiz10мин
Неделя
2
Часов на завершение
1 ч. на завершение

Using Measures to Describe Data

This week we will describe and summarize the information in the data using numerical values or measures that are able to summarise information. This is a crucial extension to the analysis of the previous week. While graphs are informative it is usually crucial for improved understanding of the data at hand to discuss their numerical properties. In this week, we will look at a range of measures, such as measures of central tendency, the range, variance, standard deviation, and so on....
Reading
10 видео (всего 55 мин.), 2 тестов
Video10 видео
1. Descriptive Statistics- Using Measures to Describe Data3мин
2. Measures of Central Tendency and Location8мин
3. Mean, Median, and Mode- Which is Best?3мин
4. Shape of a Distribution5мин
5. Measures of Variability12мин
5.1 Measures of Variability: Examples9мин
6. Weighted Mean1мин
7. Measures of Relationships Between Variables4мин
Summary2мин
Quiz2 практического упражнения
Summative Questions12мин
End of Week Quiz10мин
Неделя
3
Часов на завершение
1 ч. на завершение

Probability and Probability Distributions

Probability theory is a young arrival in mathematics- and probability applied to practice is almost non-existent as a discipline. We should all understand probability, and this lecture will help you to do that. It’s important for you to understand first that the world in which your future occurs is not deterministic- and there are future outcomes where a probability model cannot be developed… This week, we will cover the basic definition of probability, the rules of probability,random variables, -probability density functions, expectations of a random variable and Bivariate random variables. ...
Reading
18 видео (всего 43 мин.), 2 тестов
Video18 видео
1. Introduction1мин
2. Random Experiment2мин
3. Events4мин
4: Probability1мин
4.1: The Definition of Probability3мин
4.2: Probability Rules1мин
4.3: The Addition Rule of Probabilities2мин
4.4: Conditional Probability2мин
4.5: The Multiplication Rule of Probabilitiesмин
5: Random Variables2мин
5.1: The Probability Distribution Function2мин
6: Properties of Discrete Random Variables1мин
6.1: The Variance of a Discrete Random Variable1мин
7. Continuous Random Variables3мин
8. The Probability Density Function1мин
9. The Expectations for Continuous Random Variables3мин
Probability and Probability Distributions - Summary2мин
Quiz2 практического упражнения
Summative Questions10мин
End of Week Quiz10мин
Неделя
4
Часов на завершение
5 ч. на завершение

Statistical Estimation

For statistical analysis to work properly, it’s essential to have a proper sample, drawn from a population of items of interest that have measured characteristics. This week, we will cover statistical estimation, sampling distribution of the mean, point estimation, interval estimation, hypothesis testing, the Null hypothesis and look at some real life examples of their use. ...
Reading
22 видео (всего 84 мин.), 4 материалов для самостоятельного изучения, 3 тестов
Video22 видео
1. Statistical Estimationмин
2. Estimator and Estimate1мин
2.1. Point Estimator and Point Estimate1мин
2.2. Unbiased2мин
2.3. Efficiency2мин
3. Confidence Interval Estimation4мин
3.1 Confidence Intervals, Part 112мин
3.1 Confidence Intervals, Part 24мин
4. Testing Hypothesis2мин
4.1. Formulation of the Null Hypothesis and the Alternative Hypothesis3мин
4.2. Test Statisticмин
4.2.1. The Decision Rule2мин
4.2.2. Types of Errors1мин
4.2.3. Performing the Test and the Decision Rule3мин
4.2.3.1 Hypothesis Testing: Examples7мин
5. Regression Model5мин
Statistical Estimation - Summary3мин
1. Further on the Linear Regression Model3мин
2. Deriving the OLS b2мин
3.The Statistical Properties of the OLS b4мин
4. Gauss-Marcov Theorem Proof3мин
Reading4 материала для самостоятельного изучения
Practice exercise10мин
Solution to practice exercise10мин
Practice exercise10мин
Solutions to practice exercise10мин
Quiz2 практического упражнения
End of Week8мин
End of Course Quiz56мин
3.6
Рецензии: 27Chevron Right

Лучшие рецензии

автор: AMAug 17th 2017

Very challenging , kind of forgetting my college statistics

Преподаватель

Avatar

George Kapetanios

Professor of Finance and Econometrics
King's College London

О University of London

The University of London is a federal University which includes 18 world leading Colleges. Our distance learning programmes were founded in 1858 and have enriched the lives of thousands of students, delivering high quality University of London degrees wherever our students are across the globe. Our alumni include 7 Nobel Prize winners. Today, we are a global leader in distance and flexible study, offering degree programmes to over 50,000 students in over 180 countries. To find out more about studying for one of our degrees where you are, visit www.london.ac.uk...

О специализации ''International Business Essentials'

This specialisation from the University of London is designed to help you develop and build the essential business, academic, and cultural skills necessary to succeed in further study and in international business. If completed successfully, you may be able to use your certificate from this specialisation as part of the application process for the University of London Global MBA. This Specialisation is endorsed by CMI....
International Business Essentials

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.