Chevron Left
Вернуться к Spatial Data Science and Applications

Отзывы учащихся о курсе Spatial Data Science and Applications от партнера Университет Ёнсе

Оценки: 455

О курсе

Spatial (map) is considered as a core infrastructure of modern IT world, which is substantiated by business transactions of major IT companies such as Apple, Google, Microsoft, Amazon, Intel, and Uber, and even motor companies such as Audi, BMW, and Mercedes. Consequently, they are bound to hire more and more spatial data scientists. Based on such business trend, this course is designed to present a firm understanding of spatial data science to the learners, who would have a basic knowledge of data science and data analysis, and eventually to make their expertise differentiated from other nominal data scientists and data analysts. Additionally, this course could make learners realize the value of spatial big data and the power of open source software's to deal with spatial data science problems. This course will start with defining spatial data science and answering why spatial is special from three different perspectives - business, technology, and data in the first week. In the second week, four disciplines related to spatial data science - GIS, DBMS, Data Analytics, and Big Data Systems, and the related open source software's - QGIS, PostgreSQL, PostGIS, R, and Hadoop tools are introduced together. During the third, fourth, and fifth weeks, you will learn the four disciplines one by one from the principle to applications. In the final week, five real world problems and the corresponding solutions are presented with step-by-step procedures in environment of open source software's....

Лучшие рецензии


13 авг. 2018 г.

Great course. It helps I have a background in both Data Science and Geographic Information Science, but still found it equally interesting and challenging! I would highly recommend this course.


5 авг. 2021 г.

This is a great course for persons who have interacted with GIS before. It teaches you the underlying principle and science behind most of these QGIS processing algorithms

Фильтр по:

1–25 из 146 отзывов о курсе Spatial Data Science and Applications

автор: Jesús A

7 июня 2019 г.

автор: Kumar R

27 июля 2019 г.

автор: rustom s

8 апр. 2018 г.

автор: Zack D

8 июня 2018 г.

автор: Julia H

17 апр. 2020 г.

автор: CHESSEL P

16 июля 2019 г.

автор: Gopinath P

3 сент. 2019 г.

автор: Tino K

3 февр. 2021 г.

автор: Pankaj W

7 дек. 2019 г.

автор: AMAN T

6 апр. 2020 г.

автор: Michael B

10 июня 2018 г.

автор: MONCADA S J F

18 июня 2020 г.

автор: Keith P C L

15 сент. 2020 г.

автор: Ahmed W M

2 мая 2020 г.

автор: Daniel L

4 апр. 2018 г.

автор: Stanislava G

6 авг. 2018 г.

автор: Satish M

2 мар. 2019 г.

автор: Raffi I

13 авг. 2020 г.

автор: Allyson D d L

17 окт. 2021 г.

автор: Gabriel A F G

22 авг. 2020 г.

автор: Gary C

20 мар. 2022 г.

автор: Jaya S S

12 сент. 2020 г.

автор: Rodrigo V

24 нояб. 2018 г.

автор: Bopitiye G U N K

14 нояб. 2020 г.

автор: Priyantha B K

2 нояб. 2020 г.