Chevron Left
Вернуться к Воспроизводимое исследование

Отзывы учащихся о курсе Воспроизводимое исследование от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 4,065
Рецензии: 584

О курсе

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results....

Лучшие рецензии

AA
12 февр. 2016 г.

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

RR
19 авг. 2020 г.

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

Фильтр по:

251–275 из 567 отзывов о курсе Воспроизводимое исследование

автор: karon

2 июня 2016 г.

learned some very valuable tools for

автор: Jeff D

26 окт. 2020 г.

Thank you very much for this course

автор: Nataliia M

21 июля 2017 г.

I liked this course. Really usefull

автор: Edith

14 июня 2016 г.

Great course! I learned a lot. Thx.

автор: Alexandre N

6 февр. 2016 г.

Some videos have bad audio quality.

автор: Thomas N

24 янв. 2017 г.

This should be a mandatory course.

автор: sagar s

11 сент. 2017 г.

Its too good for getting exited!.

автор: Naeem K

8 авг. 2016 г.

Very well prepared and explained.

автор: Sandra G

4 нояб. 2020 г.

Excelent course, very practical.

автор: Brenda J R A

28 авг. 2017 г.

excelente curso e instructores!!

автор: Rodrigo A d S R

5 сент. 2018 г.

Really cool concept and pratice

автор: Danish K

28 нояб. 2016 г.

Awesome course. Must to have!!!

автор: Ghazouan S

30 окт. 2016 г.

Best course, I have come cross.

автор: Robert J C

24 авг. 2019 г.

It's good to learn R Markdown.

автор: gerson d o

21 июня 2019 г.

GREAT course!!!!!!!!!!!!!!!!!!

автор: Mounika G

15 апр. 2020 г.

very good interactive courses

автор: Mahmoud E

27 нояб. 2018 г.

Great course very informative

автор: Wang C

29 мая 2016 г.

This is a very useful course

автор: Gopal B

4 апр. 2016 г.

Great course!! Go GO RPENG!!

автор: Tomasz S

4 сент. 2019 г.

Extremely important course.

автор: Roland P

22 нояб. 2017 г.

Great course, very relevant

автор: Henrique C

4 февр. 2016 г.

Great Course, Learned a lot

автор: Raju G

15 сент. 2017 г.

excellent publishing skill

автор: Muhammed A I

2 нояб. 2016 г.

nice learn about the graph

автор: Guilherme

7 мар. 2016 г.

Practical, and well paced.