Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others. We cover R package development, writing good documentation and vignettes, writing robust software, cross-platform development, continuous integration tools, and distributing packages via CRAN and GitHub. Learners will produce R packages that satisfy the criteria for submission to CRAN.
от партнера
Об этом курсе
Карьерные результаты учащихся
25%
14%
Приобретаемые навыки
Карьерные результаты учащихся
25%
14%
от партнера

Университет Джонса Хопкинса
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
Программа курса: что вы изучите
Getting Started with R Packages
Documentation and Testing
Licensing, Version Control, and Software Design
Continuous Integration and Cross Platform Development
Рецензии
Лучшие отзывы о курсе BUILDING R PACKAGES
Fantastic course... Unfortunately, not too many people registered, it's tough to get your assignments graded. The program is the great continuation to the 10 course R data science specialization...
Very good course for intermediate/advanced R users. Sad that you are elegible to do assignments only if you pay.
This is a critical skill and it's barely covered anywhere else. Thanks for making this course!
Overall, this was a good course to learn the intricacies of building R packages.
Специализация Mastering Software Development in R: общие сведения
R is a programming language and a free software environment for statistical computing and graphics, widely used by data analysts, data scientists and statisticians. This Specialization covers R software development for building data science tools. As the field of data science evolves, it has become clear that software development skills are essential for producing and scaling useful data science results and products.

Часто задаваемые вопросы
Когда я получу доступ к лекциям и заданиям?
Что я получу, оформив подписку на специализацию?
Is financial aid available?
Остались вопросы? Посетите Центр поддержки учащихся.