Chevron Left
Вернуться к Introduction to Data Science in Python

Отзывы учащихся о курсе Introduction to Data Science in Python от партнера Мичиганский университет

4.5
звезд
Оценки: 25,634
Рецензии: 5,714

О курсе

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively. By the end of this course, students will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Network Analysis in Python....

Лучшие рецензии

PK

9 мая 2020 г.

The course had helped in understanding the concepts of NumPy and pandas. The assignments were so helpful to apply these concepts which provide an in-depth understanding of the Numpy as well as pandans

YY

28 сент. 2021 г.

This is the practical course.There is some concepts and assignments like: pandas, data-frame, merge and time. The asg 3 and asg4 are difficult but I think that it's very useful and improve my ability.

Фильтр по:

5251–5275 из 5,665 отзывов о курсе Introduction to Data Science in Python

автор: Samuel L

4 июня 2020 г.

Please update the course pandas and numpy version!

автор: 18P917 V R M

5 июня 2020 г.

Assignment questions are not clearly communicated

автор: Bindu G

22 авг. 2018 г.

assignments are too long and videos are too fast.

автор: Kalashnik A

29 апр. 2018 г.

The quality of the testing system is really poor.

автор: Qinling Y

2 окт. 2018 г.

The assignments are stimulating and interesting.

автор: Taha R

2 июня 2018 г.

Clear lectures. But assignments need to improve.

автор: F B

12 мар. 2021 г.

This course provides a superficial introduction

автор: Vinay K V

16 июля 2020 г.

Course assignments are bit tough make it easy

автор: Mohamed A

21 мая 2020 г.

Kinda fast paced and needs more explanation !

автор: Kondamudi S C

2 авг. 2020 г.

The instructor taught this course very fast.

автор: Chen L

5 апр. 2017 г.

More programming details should be included.

автор: Pravin A J D

9 дек. 2018 г.

can be made a bit detailed course on Python

автор: Maxim P

14 июля 2018 г.

less talking more usefull guiding is needed

автор: Rohit R

12 июля 2020 г.

Lecture explanation could have been better

автор: Jinsuk H

15 окт. 2017 г.

Good materials but video doesn't help much

автор: Oleg K

4 нояб. 2018 г.

Compare to Machine Learning from Stanford

автор: Shraddha K

2 мар. 2019 г.

More elaborate lectures would help more!

автор: 丁浩然

7 окт. 2018 г.

The assignment is a little bit hard....

автор: Lina L

27 мар. 2022 г.

Good for beginners in pandas and numpy

автор: COMP-25 N S P

15 июня 2020 г.

more practice video need to be added

автор: Pakin P

10 янв. 2020 г.

why not have expect output for check

автор: Venkata S K R C

5 дек. 2017 г.

Totally not for absolute beginners .

автор: Deyi L

17 мая 2020 г.

Homework is too hard for beginners.

автор: SAHARSH G

2 нояб. 2019 г.

Should be little more descriptive.

автор: Sara R

23 июля 2018 г.

Please change your teacher. Thanks