Chevron Left
Вернуться к Introduction to Data Science in Python

Отзывы учащихся о курсе Introduction to Data Science in Python от партнера Мичиганский университет

Оценки: 25,783
Рецензии: 5,739

О курсе

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively. By the end of this course, students will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Network Analysis in Python....

Лучшие рецензии


28 сент. 2021 г.

This is the practical course.There is some concepts and assignments like: pandas, data-frame, merge and time. The asg 3 and asg4 are difficult but I think that it's very useful and improve my ability.


9 мая 2020 г.

The course had helped in understanding the concepts of NumPy and pandas. The assignments were so helpful to apply these concepts which provide an in-depth understanding of the Numpy as well as pandans

Фильтр по:

4601–4625 из 5,689 отзывов о курсе Introduction to Data Science in Python

автор: G c p

12 мая 2020 г.

it good to understand assignment also very good.

автор: Ankit G

2 мая 2020 г.

It was a great experience attending this course.

автор: Sahil G

26 мар. 2020 г.

thanks , the course will be helpful for my work

автор: Ardan B P

19 дек. 2019 г.

Good, but I think the video course is too simple

автор: Rachel S

14 авг. 2018 г.

Some directions were confusing but learned a lot

автор: Shankar S

23 июня 2020 г.

I found this course very useful and challenging

автор: Qucheng P

29 авг. 2019 г.

Need to have more guidance for the assignments!

автор: Raúl A R C

15 дек. 2018 г.

some of the automatic revision has some issues.

автор: Marin S

2 дек. 2018 г.

Auto grader needs better debugging capabilities

автор: Angus L

2 июня 2017 г.

very good course and the lecturer is very good.

автор: Dong P

28 дек. 2021 г.

Wonderful knowledge for newbie in Data Science

автор: Mathura D

23 июля 2020 г.

The last week module was not very much cleared


7 июня 2020 г.

The course is very good so as the instructor .

автор: Dongqing Y

8 мая 2020 г.

Assignments barely reflect the course contents

автор: Christian C G E

28 апр. 2020 г.

Interesting topics but very fast explanations.

автор: Vikas Y

20 авг. 2018 г.


Give some more insights of the basics.

автор: Serge B

5 июля 2018 г.

exercices should be explained in a clearer way

автор: Jaap d K

23 мар. 2018 г.

Nice introduction. Learned a lot about Pandas.

автор: Takayuki S

13 мар. 2018 г.

It took a while to complete, but was worth it!

автор: Sing C Y

9 авг. 2021 г.

I like the real-world data for the assignment

автор: estelle B

4 окт. 2020 г.

should be done after good knowledge of Python

автор: Prakash B

9 авг. 2020 г.

one of the best course for the data scientist

автор: GOUTHAM R K

18 июля 2020 г.

Good ,But its not recommended for beginners .

автор: Islombek A

2 окт. 2019 г.

Quite good, but mostly I need to learn on web

автор: Neha b

20 июля 2019 г.

great course, very good learning opportunity.