Chevron Left
Вернуться к Introduction to Data Science in Python

Отзывы учащихся о курсе Introduction to Data Science in Python от партнера Мичиганский университет

4.5
звезд
Оценки: 24,107
Рецензии: 5,402

О курсе

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively. By the end of this course, students will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Network Analysis in Python....

Лучшие рецензии

PK
9 мая 2020 г.

The course had helped in understanding the concepts of NumPy and pandas. The assignments were so helpful to apply these concepts which provide an in-depth understanding of the Numpy as well as pandans

SI
15 мар. 2018 г.

overall the good introductory course of python for data science but i feel it should have covered the basics in more details .specially for the ones who do not have any prior programming background .

Фильтр по:

4401–4425 из 5,322 отзывов о курсе Introduction to Data Science in Python

автор: AKASH K

22 июня 2020 г.

A little hard but very informative.

автор: ankit k

18 мая 2020 г.

please enhance lecture delivery way

автор: Ankit S R

26 апр. 2020 г.

Nice course , and very informative.

автор: Andy B

14 мая 2019 г.

Very self-directed and challenging.

автор: Yuanlong Z

26 мар. 2019 г.

作业难度太大;在课程讲授和作业之间缺乏必要的平衡。

需要大量的课外自学。

автор: Yazan K

29 сент. 2018 г.

A great course, Highly recommended!

автор: Quancheng H

3 янв. 2018 г.

The test is too hard for beginners!

автор: Jesús P

6 дек. 2017 г.

Great course but could be improved.

автор: Apurve D

14 авг. 2017 г.

Very difficult course for beginners

автор: Botond F

11 июня 2017 г.

The test descriptions are ambiguous

автор: Matthew C

1 янв. 2017 г.

good solid intro to python munging.

автор: Manoj y

7 янв. 2021 г.

best for beginners in data science

автор: Yousef M

24 апр. 2020 г.

autograder is not fun to work with

автор: Yu D

8 авг. 2019 г.

作业确实难,但课程也很棒,如果课程能再多一点实例讲的更细一定会更好!

автор: vikash

2 мар. 2019 г.

ITS WAS A GOOD EXPERIENCE FOR ME..

автор: Selvakumar

30 мая 2018 г.

Good way of starting Data Science.

автор: SHIVAM A

15 окт. 2020 г.

Needed a bit of more on Python DS

автор: Rakhshanda M

18 июля 2019 г.

Could have been more interactive.

автор: Miguel L P

19 окт. 2020 г.

Really good exercises and theory

автор: GAURAV S

9 сент. 2020 г.

That was tough but it was worthy

автор: PRAKHYATH K U

18 мая 2020 г.

The week4 could have been better

автор: Mukul S

14 мая 2020 г.

accent is not easy to understand

автор: Hamideh T

16 мая 2019 г.

DIFFICULT FÖR ME BUT REALLY GOOD

автор: Shankar J

18 мар. 2018 г.

Good course with great practice.

автор: Dongqing X

18 нояб. 2017 г.

The ipynb service is not stable.