Chevron Left
Вернуться к Probabilistic Graphical Models 2: Inference

Отзывы учащихся о курсе Probabilistic Graphical Models 2: Inference от партнера Стэнфордский университет

4.6
звезд
Оценки: 477

О курсе

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem....

Лучшие рецензии

AT

22 авг. 2019 г.

Just like the first course of the specialization, this course is really good. It is well organized and taught in the best way which really helped me to implement similar ideas for my projects.

AL

19 авг. 2019 г.

I have clearly learnt a lot during this course. Even though some things should be updated and maybe completed, I would definitely recommend it to anyone whose interest lies in PGMs.

Фильтр по:

1–25 из 74 отзывов о курсе Probabilistic Graphical Models 2: Inference

автор: AlexanderV

9 мар. 2020 г.

автор: Shi Y

16 дек. 2018 г.

автор: Jonathan H

3 авг. 2017 г.

автор: Anurag S

8 нояб. 2017 г.

автор: Tianyi X

23 февр. 2018 г.

автор: Deleted A

18 нояб. 2018 г.

автор: Michael K

24 дек. 2016 г.

автор: george v

28 нояб. 2017 г.

автор: Kaixuan Z

4 дек. 2018 г.

автор: Michel S

14 июля 2018 г.

автор: Jiaxing L

27 нояб. 2016 г.

автор: Hunter J

2 мая 2017 г.

автор: Kuan-Cheng L

23 июля 2020 г.

автор: Mahmoud S

22 февр. 2019 г.

автор: Sergey S

24 сент. 2020 г.

автор: Chan-Se-Yeun

30 янв. 2018 г.

автор: Rishi C

28 окт. 2017 г.

автор: Dat N

20 нояб. 2019 г.

автор: Satish P

28 авг. 2020 г.

автор: Alfred D

29 июля 2020 г.

автор: Ayush T

23 авг. 2019 г.

автор: Anthony L

20 авг. 2019 г.

автор: Lik M C

3 февр. 2019 г.

автор: Orlando D

12 мар. 2017 г.

автор: Yang P

29 мая 2017 г.