Chevron Left
Вернуться к Mathematics for Machine Learning: PCA

Отзывы учащихся о курсе Mathematics for Machine Learning: PCA от партнера Имперский колледж Лондона

Оценки: 2,698
Рецензии: 675

О курсе

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Лучшие рецензии

6 июля 2021 г.

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

16 июля 2018 г.

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Фильтр по:

276–300 из 671 отзывов о курсе Mathematics for Machine Learning: PCA

автор: 祈璃

9 июля 2021 г.

This module is quite challenging!

автор: Dina B

8 авг. 2020 г.

Nice course - informative and fun

автор: saketh b

10 авг. 2020 г.

The instructor did a great job!

автор: Sukrut B

19 окт. 2020 г.

Try to make it little bit easy

автор: Javas A B Y P

28 мар. 2021 г.

Alhamdulillah, this is great!

автор: Israel d S R d A

5 июня 2020 г.

Great course very recommended

автор: Muhammad T

2 мар. 2021 г.

haha good course i completed

автор: Jonah L

6 дек. 2020 г.

It's hard but it's worth it!

автор: Gautham T

16 июня 2019 г.

excellent course by imperial

автор: Ankur A

15 мая 2020 г.

Tough course, learnt a lot.

автор: Imran S

19 дек. 2018 г.

Great Coverage of the Topic

автор: Ajay S

20 февр. 2021 г.

Great course for every one

автор: Felix G S S

27 мар. 2021 г.

Wow, it is so challenging

автор: Ricardo C V

25 дек. 2019 г.

Challenging but Excellent


17 июля 2020 г.

Excellent course content

автор: Mayank K

2 июля 2020 г.

This course is very good

автор: Michael

3 авг. 2021 г.

I strongly recommend it

автор: Subhodip P

15 дек. 2020 г.

Awesome course loved it

автор: Pranav N

25 авг. 2020 г.

Amazing overall course

автор: iorilu

3 июня 2021 г.

intuitive and helpful

автор: Gazi J H

16 окт. 2020 г.

Thank you very much.

автор: Yasser Z S E

26 мая 2020 г.

Thank you very match

автор: wonseok k

3 мар. 2020 г.

hard but good course

автор: Keisuke F

15 сент. 2019 г.

I had big fun of PCA

автор: Rajkumar R

20 июня 2020 г.

I enjoyed learning.