Chevron Left
Вернуться к модели последовательности

Отзывы учащихся о курсе модели последовательности от партнера deeplearning.ai

4.8
звезд
Оценки: 27,223
Рецензии: 3,243

О курсе

In the fifth course of the Deep Learning Specialization, you will become familiar with sequence models and their exciting applications such as speech recognition, music synthesis, chatbots, machine translation, natural language processing (NLP), and more. By the end, you will be able to build and train Recurrent Neural Networks (RNNs) and commonly-used variants such as GRUs and LSTMs; apply RNNs to Character-level Language Modeling; gain experience with natural language processing and Word Embeddings; and use HuggingFace tokenizers and transformer models to solve different NLP tasks such as NER and Question Answering. The Deep Learning Specialization is a foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to take the definitive step in the world of AI by helping you gain the knowledge and skills to level up your career....

Лучшие рецензии

AM
30 июня 2019 г.

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

JY
29 окт. 2018 г.

The lectures covers lots of SOTA deep learning algorithms and the lectures are well-designed and easy to understand. The programming assignment is really good to enhance the understanding of lectures.

Фильтр по:

126–150 из 3,242 отзывов о курсе модели последовательности

автор: Andres G

22 мар. 2020 г.

Finally... Every piece of effort was worth it! After so many hours, now I understand how proud we can fell of completing these amazing courses! The best one I have tried so far, definitely made a difference in my professional views but above all, it confirmed my expectations: this is the activity sector where I want to develop, the work in which I want to grow without any doubt.

Thanks Andrew. Thanks Team. Thanks to everyone who made this possible.

автор: Marcus H

26 сент. 2020 г.

This regards all 5 courses of the DL specialisation.

1st of all: great work, it gives a much broader perspectives.

Room for improvement: sometimes the assignments become much of a "Python riddle" where one has to fiddle a lot with language technicalities and loses time for actually playing with the DL subject

2nd: please improve the submitting and savin g behaviour of the notebooks in the new LAB system. It is really painfully slow and unstable.

автор: ANSHUMAN S

25 июня 2019 г.

This was the most difficult and most interesting course i had in all of the five deeplearning.ai courses

but after doing all the 7 assignments i feel like i learned a lot and encountered with some of the amazing thing which i wondered how they are done . Once again I thanks to Andrew Sir and other teachers for beautiful lectures and perfect quizzes assigments and at last a heartly congrats to Coursera for giving this platform to me.

Thank You!

автор: Mihai L

21 мар. 2018 г.

Will give this course also 5 stars. The assignments were easy but required some knowledge of Keras. So you have to invest some time on their site.Otherwise it's like fitting pieces in a bigger puzzle. Most pieces are already layed out for you .. you need to just fit your small ones.

I realize though that deep learning requires a lot of practice and experimentation and completing this course (and specialization) is just a tiny first step ..

автор: P S R

12 февр. 2018 г.

Course contents and coverage was best. Duration of 3 weeks is little too short to really understand all the details of programming exercises. May be extend this to 4 to 5 weeks and spend little more time on speech recognition, music generation and other audio data processing would have helped.

Unlike all other earlier modules, this one had many issues with grader and many errors in note book templates. Hope these will be addressed in future.

автор: James B

1 мая 2018 г.

Wonderful course, expert instruction from Prof. Ng. I can't recommend the Specialization enough.

The choices of architecture and of hyperparameters for the assignments' network could have used further explication. Another desire left unfulfilled was that I would want the sequence models course doubled in all dimensions, ie lectures, assignments, etc. It was all over too quickly with questions lingering. Further study required!

автор: Weinan L

7 апр. 2018 г.

RNN, LSTM, GRU... fun stuff even you don't focus on NLP. As always, Andrew makes complicated things simpler. I certainly will keep all the course materials for future reference.

It may be easier to follow other online course, but this course will teach you not just how, but also why...

Read coding instructions carefully and pay attention to details, otherwise you may end up with hours of debugging. That's what happened on me, LOL.

автор: Virginia A

7 апр. 2020 г.

Sequence Models are a though subject. many people, during working meeting, mention them as the final resource and solution to everything. I feel I better understand the nuances of them thanks to this course.

I personally enjoyed some of the extra reading ( original papers quoted at the bottom of the videos). Sometimes is hard to navigate in the large sea of publications. It is nice to be pointed towards some piece of reference

автор: Chris D

11 янв. 2020 г.

I go back and forth on whether the time-saving aspects of the Python Notebooks are worth the reduction in ML coding experience. I suppose these aren't coding classes, but I also feel some of the concepts aren't cemented as well as if the students were led through a more challenging, trial-and-error experience. That's hard to do, though.

Overall, I recommend the specialization. Maybe just be sure to play around offline, too. :)

автор: Sima M H

25 мая 2021 г.

Immensely grateful for holding this course, specially Prof. Ng. The way he explained the all concept to the mathematical models was very endearing and excellent.

That was great, however I was expecting to learn at least 1 allocated week to time series data and forecasting (prediction) in sequence model.

In addition, if in one assignment we had imported data ourselves, we could have learned the section much better.

Best Regards

автор: João A J d S

23 апр. 2021 г.

The only trouble with this course is that we're talking about seriously deep networks. That means it's difficult to present working, practical cases (jupyter notebooks) to work all the steps.

Still, I'd recommend presenting more and simpler steps towards building an RNN (particularly an LSTM). I had to come back to the notebooks several times... and honestly, I think I'll get back there again to try and understand better...

автор: 王浩礴

1 июля 2019 г.

This series of course provides a comprehensive overview of NLP algorithm and different applications. I really enjoy the projects the deal with audio files. The course skip the linear algebra and differentiation part that not everyone wants to look into. But I hope it will be better if we could also implement the data processing functions of different types of sequential inputs, since data preprocessing is also significant

автор: KIM T

11 июня 2021 г.

My knowledge has been upgraded to the next level through Coursera's Deep Learning Specialization. Through systematic and easy-to-understand explanations, quizzes, and program exercises, I was able to increase my interest and understanding of Deep Learning. Based on this, I really want to change my field of work and work related to Deep Learning. My goal is to make myself a person who uses AI without being replaced by AI.

автор: Stefano I

12 дек. 2019 г.

This was a great intro to RNNs and Sequence Models.

Particularly liked the assignment on voice keyword detection. It was useful to learn how to synthesize a dataset quickly and train a proper model for the task.

Also the NLP parts were useful. I would have liked to have more advanced assignments, but still it was a great course that gives you enough knowledge to learn more on your own or explore more advanced courses.

автор: Najeeb K

24 авг. 2018 г.

I had struggled with the complexity of Sequence Models ever since I started learning about Machine Learning models. This course gave me an easier intuition to the sequence models without dwelling too deep into the mathematical complexities. As a person who has very little experience with Linear Algebra this helped me a lot to understand and apply such architectures to solve problem. Thanks Prof Andrew and the team! :)

автор: Frank T

20 февр. 2018 г.

I think it is a great course. There are some issues here and there with notebooks and related materials. However, considering the large and detailed amount of content in this course and it being a new course, things not being 100% perfect is OK by me. I would rather have the thoughtful content and exercises, versus something much lighter that would be easier to produce. Thank you to all who prepare these courses.

автор: AVEEK G

22 июня 2020 г.

Superb course structure, the assignments beautifully complement the lectures and the amount of guidance makes it easy even for someone not too acquainted with programming. As a suggestion would have liked slightly organized detailed presentations which would help in reviewing the course material later by glancing through rather than going through the lectures. Over all an awesome course with great learning. Thanks

автор: Lavan O P

21 мая 2020 г.

I enjoyed learning all the five courses of this deep learning specialization. Special thanks should go to Dr. Andrew and the instructors for delivering the course material in an interesting manner. Quite frankly I'm a little bit disappointed with this specialization being too short. Expect more courses in this specialization in the future. (Maybe reinforced learning).Again thank you all for this great experience.

автор: Michael Y

23 мая 2020 г.

I'm grateful for the chance to take the 5 courses in this program for a very affordable price. It is the best educational deal I've ever come across. The courses are well taught, I will continue on to take other courses offered online on the same subject. Thanks to everyone who made this possible, and I will definitely try to make a contribution to humanity as Prof. Ng has challenged us to do.

Thanks again!

автор: Nitin K

3 апр. 2020 г.

Thank you Prof. Andrew Ng and team for these series of courses. The entire specialization was brilliant and the way the programming exercises were structured, using real-life examples was the best part of all. Prof. Andrew Ng always has a smile on his face when he explains the concepts and he is so humble that he thanks us for spending time doing the specialization, whereas it should be the other way round.

автор: Yiqiao Y

5 февр. 2018 г.

I highly recommend this course to all audience. Professor Ng is an outstanding researcher with tremendous amount of experience. Moreover, he is a well-known lecturer in terms of his clear explanation and interesting examples provided in class. I have gained a lot of experience as well as knowledge in the field of deep learning. I am very grateful for his time and effort for providing all the resources here.

автор: Kostas H

5 нояб. 2019 г.

The best online course I've seen anywhere about recurrent neural networks! Prof. Andrew Ng explains everything in such a simple manner. For example, understanding the structure of LSTMs is quite challenging, but Prof. Andrew Ng explains it in a very easy to understand fashion. Likewise with GRUs, Seq2Seq models, bidirectional RNNs, etc. And the code exercises have very beautiful and detailed explanations.

автор: Guruprasad S

4 мар. 2018 г.

Thanks Professor Andrew Ng and team for the deep learning specialization. The course material was well designed for online learning. The assignments were perfectly manageable with a few hours of investment every week and the learning was very effective. Last but not least, I found Professor Ng's wisdom, insights, tips to be invaluable to anyone regardless of their level of expertise in machine learning.

автор: Shishir M

31 дек. 2019 г.

This was the best course among 5 course specialization. It was well designed, structured and application oriented. Assignments were pretty fun to solve as they involved solving real world problems. This course gave me direct exposure to industry level problems and helped me gain more insights towards the future of deep learning. Because of this I am really excited to continue working in deep learning.

автор: Rohit K

6 июля 2019 г.

Hello Andrew, I am a big fan of you. Learning from your every course. Very unfortunate that I can do that remotely only.

One thing that I want to mention - Can we have lecture notes on coursera, just like the way used to in CS229 that we can read before coming to next lecture. I found that that was very useful in understanding when things get harder.

Thanks hope we can improve coursera in that matter.