Вернуться к Нейронные сети и глубокое обучение

звезд

Оценки: 114,709

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications.
The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

LV

6 апр. 2019 г.

A bit easy (python wise) but maybe that's just a reflection of personal experience / practice. The contest is easy to digest (week to week) and the intuitions are well thought of in their explanation.

SS

26 нояб. 2017 г.

Fantastic introduction to deep NNs starting from the shallow case of logistic regression and generalizing across multiple layers. The material is very well structured and Dr. Ng is an amazing teacher.

Фильтр по:

автор: Michael C

•23 сент. 2017 г.

Excellent course. Surpasses Andrew Ng's original Machine Learning course in conceptual depth and ease of implementation. The lecture videos, quizzes, and programming assignments are all targeted towards someone who knows nothing about deep learning or machine learning, yet manages to elaborate on surprisingly advanced topics which you would not expect to make an appearance in an introductory course. It strikes a superb balance between simplicity and depth that is rare even in in-person university courses, and much rarer still in MOOCs. I will be taking all the rest of the courses in the Deep Learning Specialization. Well done.

автор: Hong X

•2 окт. 2019 г.

I've learned to build the basic binary classification model from conventional logistic regression to a shallow model (with one hidden layer) up to any layers of ANN. One of the most rewarding point for me is that I start using python (other than Matlab with which I have stuck for years until recently most cutting-edge open-source codes are found delivered in Python!). Although there is still a long way to go , I found well warmed up by those delicately designed step-by-step programming exercises in Jupyter notebook. Therefore, I do appreciate the course materials contributed by the lecturer as well as the exercises-designers!

автор: Chi W C

•13 сент. 2017 г.

Wonderful class. I started out not knowing anything about neural network or deep learning. I was able to follow the class lectures to get a sense of what was going on. The assignments were clearly structured and well organized, and serves as excellent examples in how to build this type of applications (by small building blocks and test each of the block carefully).

At the end, I was able to build my first neural network implementation in recognizing a cat!!

(However, I have uploaded 3 non-cat images, but NN failed by predicting these were cats. On the contrary, logical regression correctly predict the 3 images as non-cat).

автор: Carl G

•6 мая 2018 г.

Andrew Ng is a thorough teacher and shows how online platform can be as engaging as taking a live class. His pace and style of writing slides is perfect for keeping pace taking notes by hand (my preferred way for efficient learning). He takes time to explain in depth how NN's work, and even more important his experience how to use them. Homework is a bit simple, but also appreciate to not be mired in coding details. Nice to be able to focus on how NN's works. Best part is that each piece of code can be fully tested against known output before used further. Illustrates nicely good practice once doing real coding project.

автор: WEI X L

•13 янв. 2018 г.

Through the Neural Networks and Deep Learning course, I have learned the fundamentals of neural networks and deep learning. The lectures are simple and easy to understand. The assessments have designed to test students in the fundamental knowledge of neural networks and deep learning. The assignments are designed to guide students on how to design and implement a shallow and deep neural networks, by applying what have been taught in the lecture. In conclusion, I enjoyed this course and I will definitely continue the deep learning specialisation courses to achieve my career goals. Thank you Prof. Andrew Ng and Coursera.

автор: Michael B

•18 сент. 2017 г.

Andrew, like no other instructor, manages to convey difficult material in a clear and concise manner. Even after many years experience in machine learning/deep learning, this course lead to many "aha" moments where many things I learned about the topic came together! The only criticism that I have for this excellent course is that I wish it would contain some, maybe optional, videos that go deeper into the math of for example backprop. I think this is a difficult concept to grasp and I imagine that if Andrew would sketch the proof with is clear and concise style, a lot more people had a much better understanding of it.

автор: William L K

•6 сент. 2017 г.

Excellent course. Lectures are clear and concise. Professor Ng makes it seem so understandable despite the complexity of actual programming implementation! Assignments are both relatively straightforward (overall concepts) and tricky (keeping track of the matrix manipulations in Python). I don't know how many times I started a programming assignment, hit a wall in terms of programming errors, and came back to it after a time and getting through that error. Persistence, at least for me, was definitely a major component. Well worth the time put in. Looking forward to taking the next class in the sequence.

автор: Layth R

•17 авг. 2018 г.

I am so proud and confident of the things i learned. i never expected to learn this much from an online machine learning course, so many concepts that were vague to me in the past are now Crystal clear, and prof. Andrew does an outstanding explanation for each concept, not to mention that the programming assignments are extremely beneficial and cover every concept explained throughout the videos in a really cool, professional way. This has been only the first course in the deep learning specialization i am currently pursuing, and it made me so much more excited for the upcoming courses! thank you coursera :)

автор: ZoeLee

•16 авг. 2019 г.

First of all, Prof. Andrew N.g delivered an excellent course. And I am grateful to be able to take this course under the financial aid support. So big thanks to Coursera team and Andrew Ng.

And for me personally, I understood better in Deep Learning and some techniques behind it. I have mastered the basics of Python Numpy package, and therefore I now know how to make an L-layer deep neural net by using python codes and apply it to a binary classification application.

I will continue to learn more... Thanks again! So much!!

автор: William M

•4 сент. 2017 г.

I really enjoyed taking this course. I have taken one of Andrew's courses before, and they keep getting better. I have a background in development, and appreciated the use of python over octave. Andrew consistently strives to provide an intuitive feel for the topics he is presenting. The fact that he is able to provide a complex subject in a simple manner speaks to his mastery of the subject.

The course contained a great mix of theory and practical application of those theories. I'm looking forward to the next course.

автор: Abhijith V

•20 июля 2021 г.

This course is really focused on the fundamentals of deep learning. Be it the mathematics, notations or jargons, the instructors have made sure to maintain utmost clarity. I enjoyed creating neural networks from scratch just with python and numpy library rather than simply calling library function without knowing what is happening under the hood. I recommend this course for anyone who wants to really understand what neural networks are and how they work.

автор: John G

•28 мар. 2020 г.

What an amazing course. To be fair, I had completed Dr. Ng's course "Machine Learning" before taking this particular course, so some of the concepts, I was already familiar with. This course, delved deeper into the mathematics of Neural Networks and followed it up with coding assignments in Python. This course has provided a strong foundation for me to continue to build my knowledge base. To anyone interested in Deep Learning, take this course!!!

автор: Malte B

•8 апр. 2019 г.

Great course to get a practical understanding of (Deep) Neural Networks. I would recommend to take Andrew Ngs "Machine Learning" course (also available on Coursera) beforehand, because the latter is much more rigorous when it comes to matrices operations. Thus it is unfortunately possible to just fill in the provided code in this course but don't really understand what it does.

автор: Muhammad T

•10 мая 2020 г.

This field of deep learning has always intrigued me and I wanted to study it. My university offered a course, but sadly I couldn't enroll in it. However, thankfully, I got access to this masterpiece and now I can say that by completing course 1, I am pretty confident about neural networks and how to construct one.

Great Couse, and Great Instructor. Would Definitely RECOMMEND!!!

автор: WALEED E

•16 дек. 2018 г.

This course formed a concrete background in building multi-layers neural network from scratch. The best advantage of this course is I was able to immediately apply the knowledge I gained into real world problem like humanoid navigation towards known targets. Illustration is great in terms of mathematical explanation and coding in a step by step walk through.

автор: Abdessalem H

•3 дек. 2017 г.

This is one of the courses I enjoyed the most. For someone who has little to no knowledge in calculus and programming, I found the course is well tailored for all kinds of background. The pace is not so fast and Andrew is making it so easy even for beginners to grasp the new jargon and formulae. Thank you Coursera. Thank you Andrew.

автор: sai d k

•18 июня 2019 г.

The course gives you very deep intuitions about neural networks and glimpse of deep learning .NO special mathematics course is not required formal understanding of high school calculus is enough .The programming assignment are too good actually they multiply your understanding, you get a feeling of real world application .

автор: Sreenivas M

•17 дек. 2019 г.

Excellent course to start learning about the basics of deep learning. Not just a simple copy paste cat vs dog classification course. But rather, a proper mathematical understanding of logistic regression, how it can be used as a single layer network to building one hidden layer network to multi layer hidden neural networks.

автор: Nikhil S

•15 янв. 2020 г.

Neural Networks and deep learning is absolutely a great course for beginners. Those who have interest in this field can go for this course. It will clear all your doubts and you will enjoy this course. It was absolutely helpful for me . It helped me in gaining new skills and expand my knowledge.

автор: Hamed B

•4 авг. 2022 г.

This course is wonderful. The teaching methods, quizzes and programming assignments are standard and practical. Programming Assignments helped me to create different Neural Networks step by step. As a result, my understanding of NN was increased significantly. Thanks Coursera.

автор: mostafa n

•4 мар. 2020 г.

This course really helped me and gave me new skills by applying my first neural network in very cleared way from prof Andrew ng as usual. big thanks for everyone who worked on this course and helped us to increment our knowledge, i recommend this course to everyone.

автор: Yi-Ching C

•16 авг. 2019 г.

The professor explains the concepts step by step and clearly. The program assignment leads you to know how to utilize the python and build up the structure. It is easy to understand what a difficult deep learning. I am appreciated to learn the lesson with Coursera.

автор: Mahdi K B

•15 апр. 2022 г.

Simply put, a superb course to deeply understand deeplearning, not only does this course gives a deep knowledge of this field but also teaches you the programming skills you need to implement the knowledge you have aquired.

Just amazing,

thanks Andrew Ng.

автор: smrfkd

•17 авг. 2019 г.

This course is compatible with beginners. Even though to learn Neural Networks and Deep Learning needs a huge amount of knowledge, Professor Andrew Ng explained the details very carefully that makes the lecture to be understood easily. Thanks a lot.

автор: Sagar B

•10 сент. 2017 г.

A great course to understand basic concepts of Deep Learning. If you are a beginner in Deep Learning and thinking if you should invest your time and money here, don't give a second thought and join right away. Andrew Ng never disappoints!

- Аналитик данных Google
- Управление проектами от Google
- UX-дизайн от Google
- ИТ-поддержка Google
- Наука о данных IBM
- Аналитик данных от IBM
- Анализ данных с помощью Excel и R от IBM
- Аналитик по кибербезопасности от IBM
- Инженерия данных IBM
- Разработчик комплексных облачных приложений IBM
- Маркетинг в социальных сетях от Facebook
- Маркетинговая аналитика Facebook
- Представитель по развитию продаж от Salesforce
- Сбытовые операции Salesforce
- Бухгалтерия от 'Интуит'
- Подготовка к сертификации Google Cloud: облачный архитектор
- Подготовка к сертификации Google Cloud: специалист по инженерии облачных данных
- Начните карьеру
- Подготовьтесь к сертификации
- Продвинуться по карьерной лестнице

- бесплатные курсы
- Изучите иностранный язык
- Python
- Java
- веб-дизайн
- SQL
- Cursos Gratis
- Microsoft Excel
- Управление проектами
- Безопасность в киберпространстве
- Людские ресурсы
- Бесплатные курсы в области науки о данных
- говорить на английском
- Написание контента
- Веб-разработка: полный спектр технологий
- Искусственный интеллект
- Программирование на языке C
- Навыки общения
- Блокчейн
- Просмотреть все курсы

- Навыки для команд по науке о данных
- Принятие решений на основе данных
- Навыки в области программной инженерии
- Навыки межличностного общения для проектных групп
- Управленческие навыки
- Навыки в области маркетинга
- Навыки для отделов продаж
- Навыки менеджера по продукту
- Навыки в области финансов
- Популярные в Великобритании курсы по науке о данных
- Beliebte Technologiekurse in Deutschland
- Популярные сертификаты по кибербезопасности
- Популярные сертификаты по ИТ
- Популярные сертификаты по SQL
- Профориентация: маркетолог
- Профориентация: руководитель проектов
- Навыки программирования на языке Python
- Профориентация: веб-разработчик
- Навыки для аналитика данных
- Навыки для UX-дизайнеров

- Сертификаты MasterTrack®
- Профессиональные сертификаты
- Сертификаты университетов
- MBA и другие дипломы в области бизнеса
- Степени в области науки о данных
- Степени в области компьютерных наук
- Дипломные программы по анализу данных
- Степени в области общественного здравоохранения
- Степени в области социальных наук
- Дипломные программы в области управления
- Дипломы ведущих европейских университетов
- Дипломы магистра
- Степени бакалавра
- Дипломы с карьерными путями, ориентированными на результат
- Бакалаврские курсы
- Что такое диплом бакалавра?
- Сколько времени нужно для получения диплома магистра?
- Стоит ли получать диплом MBA онлайн?
- 7 способов оплатить магистратуру
- Посмотреть все сертификаты