Об этом курсе
4.5
1,779 ratings
243 reviews
This one-week course describes the process of analyzing data and how to manage that process. We describe the iterative nature of data analysis and the role of stating a sharp question, exploratory data analysis, inference, formal statistical modeling, interpretation, and communication. In addition, we will describe how to direct analytic activities within a team and to drive the data analysis process towards coherent and useful results. This is a focused course designed to rapidly get you up to speed on the process of data analysis and how it can be managed. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to…. 1. Describe the basic data analysis iteration 2. Identify different types of questions and translate them to specific datasets 3. Describe different types of data pulls 4. Explore datasets to determine if data are appropriate for a given question 5. Direct model building efforts in common data analyses 6. Interpret the results from common data analyses 7. Integrate statistical findings to form coherent data analysis presentations Commitment: 1 week of study, 4-6 hours Course cover image by fdecomite. Creative Commons BY https://flic.kr/p/4HjmvD...
Globe

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Calendar

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Clock

Предполагаемая нагрузка: 1 week of study, 4-6 hours

Прибл. 6 ч. на завершение
Comment Dots

English

Субтитры: English, Japanese

Чему вы научитесь

  • Check
    Describe the basic data analysis iteration
  • Check
    Differentiate between various types of data pulls
  • Check
    Explore datasets to determine if data is appropriate for a project
  • Check
    Use statistical findings to create convincing data analysis presentations

Приобретаемые навыки

Data AnalysisCommunicationInterpretationExploratory Data Analysis
Globe

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Calendar

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Clock

Предполагаемая нагрузка: 1 week of study, 4-6 hours

Прибл. 6 ч. на завершение
Comment Dots

English

Субтитры: English, Japanese

Программа курса: что вы изучите

1

Раздел
Clock
6 ч. на завершение

Managing Data Analysis

Welcome to Managing Data Analysis! This course is one module, intended to be taken in one week. The course works best if you follow along with the material in the order it is presented. Each lecture consists of videos and reading materials that expand on the lecture. I'm excited to have you in the class and look forward to your contributions to the learning community. If you have questions about course content, please post them in the forums to get help from others in the course community. For technical problems with the Coursera platform, visit the Learner Help Center. Good luck as you get started, and I hope you enjoy the course!...
Reading
19 видео (всего 144 мин.), 17 материалов для самостоятельного изучения, 7 тестов
Video19 видео
Data Analysis Iteration8мин
Stages of Data Analysis1мин
Six Types of Questions6мин
Characteristics of a Good Question6мин
Exploratory Data Analysis Goals & Expectations11мин
Using Statistical Models to Explore Your Data (Part 1)13мин
Using Statistical Models to Explore Your Data (Part 2)5мин
Exploratory Data Analysis: When to Stop6мин
Making Inferences from Data: Introduction5мин
Populations Come in Many Forms4мин
Inference: What Can Go Wrong7мин
General Framework8мин
Associational Analyses10мин
Prediction Analyses10мин
Inference vs. Prediction12мин
Interpreting Your Results10мин
Routine Communication in Data Analysis6мин
Making a Data Analysis Presentation5мин
Reading17 материала для самостоятельного изучения
Pre-Course Survey10мин
Course Textbook: The Art of Data Science10мин
Conversations on Data Science10мин
Data Science as Art10мин
Epicycles of Analysis10мин
Six Types of Questions10мин
Characteristics of a Good Question10мин
EDA Check List10мин
Assessing a Distribution10мин
Assessing Linear Relationships10мин
Exploratory Data Analysis: When Do We Stop?10мин
Factors Affecting the Quality of Inference10мин
A Note on Populations10мин
Inference vs. Prediction10мин
Interpreting Your Results10мин
Routine Communication10мин
Post-Course Survey10мин
Quiz7 практического упражнения
Data Analysis Iteration10мин
Stating and Refining the Question16мин
Exploratory Data Analysis10мин
Inference10мин
Formal Modeling, Inference vs. Prediction10мин
Interpretation10мин
Communication10мин
4.5
Direction Signs

50%

начал новую карьеру, пройдя эти курсы
Briefcase

83%

получил значимые преимущества в карьере благодаря этому курсу

Лучшие рецензии

Основные моменты
Helpful quizzes
(3)
Well-organized content
(24)
автор: ELMar 1st 2017

A long course compared to others in the specialization, but a lot of great material. Very well presented, the instructors know how to present this material and make it easy to grasp and understand.

автор: STNov 23rd 2016

The course is full of the cases and the real life examples coupled with the theory background. Its very simple to understand and the course will definitely be of an value for people looking for

Преподавателя

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

О Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

О специализации ''Executive Data Science'

Assemble the right team, ask the right questions, and avoid the mistakes that derail data science projects. In four intensive courses, you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You’ll get a crash course in data science so that you’ll be conversant in the field and understand your role as a leader. You’ll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You’ll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you’ll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects....
Executive Data Science

Часто задаваемые вопросы

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

Остались вопросы? Посетите Центр поддержки учащихся.