Chevron Left
Вернуться к Машинное обучение

Отзывы учащихся о курсе Машинное обучение от партнера Стэнфордский университет

4.9
звезд
Оценки: 149,343
Рецензии: 38,046

О курсе

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas....

Лучшие рецензии

PZ

Jun 30, 2020

I really enjoyed this course. I learned new exciting techniques. I think the major positive point of this course was its simple and understandable teaching method. Thanks a lot to professor Andrew Ng.

RR

May 19, 2019

This is the best course I have ever taken. Andrew is a very good teacher and he makes even the most difficult things understandable.\n\nA big thank you for spending so many hours creating this course.

Фильтр по:

226–250 из 10,000 отзывов о курсе Машинное обучение

автор: Luu V L

Aug 06, 2020

best ML course in the world !!

автор: Jaspinder S V

Aug 08, 2015

Awesome course for beginners.

автор: Mulat Y C

Feb 14, 2020

Machine Learning

Data Science

автор: Mewada A J

Aug 06, 2020

best experience of learning

автор: 梁驰

Feb 08, 2020

喜欢吴恩达教授的课,讲的非常的好!教授很谦虚!赞赞赞!

автор: chandan k

Jun 06, 2019

Great course to study!

автор: Eugene M

Jan 04, 2019

Very useful course!

автор: Joy F Y

Aug 07, 2015

It's very useful

автор: Pavel K

Jun 06, 2019

A great course.

автор: Hacker O

Jun 17, 2019

very good!!

автор: Stephen M

Jun 05, 2019

Very useful

автор: ylfgd

Jun 06, 2019

very good

автор: Thierry L

Jan 04, 2019

Excellent

автор: Saiful I A

Aug 07, 2015

Very Nice

автор: Vivek K

Dec 13, 2018

Awsome

автор: Lichen N

Aug 28, 2019

深入浅出

автор: Sam C

Jan 02, 2020

I'm not crazy about online learning. There are certain aspects of classroom learning that online learning can't give. But as far as online learning goes, this course is probably about as good as it ever gets.

Prof. Ng gives very clear expositions of the fundamentals of machine learning. Anyone taking this class and completing the assignments will be ready to apply machine learning to at least some simpler real world problems and should be in a position to quickly pick up more advanced techniques for more complex problems.

The exams are fair (although I think some more work could have been done to make many of the questions less ambiguous). The programming assignments can be a time sink, but I don't think they could have been any shorter and still give valuable practice in using the techniques outlined in the lectures.

Students who already have a background in linear algebra or the basics of data analysis might find the pace of the class in the early units, where Prof. Ng deals with linear regression, to be rather slow. But if you can get through those early units, you will definitely find yourself dealing with new material (and occasionally appreciating the initial slow pace).

Octave/Matlab is the only language in which the assignments are accepted. I personally would have voted for python. But Prof. Ng spends a few lectures telling you all you need to know about Octave/Matlab, for the purposes of the course. (To save time, I would advise that you spend a day or two learning the language on your own before starting this course. That will allow you to stay that much more ahead of the due dates. But maybe that's just me.)

One word of warning is that, as a friend of mine said after taking a machine learning class in a traditional university classroom, this material makes machine learning accessible, but also takes the "magic" out of it. If you are impressed at how Netflix can be so good at recommending new movies for you to watch, well, after taking this class, you won't be impressed anymore. You'll probably be figuring that, yeah, they probably have some tricks I don't know about, but I could do 90% of what they're doing myself! Which actually means it's a good class!

One thing I definitely would have added are some words at the end of the course about what the "hot topics" are in machine learning, and suggestions about where to go from here, what topics would reward further study, and what books, websites etc. are available for studying them. For example, some words on where to study how and when machine learning turns into full blown artificial intelligence would be appreciated.

The only real gripe I have is that the assignment due dates really didn't give appropriate regard to how busy real life can get during the winter holidays. After all, the big selling point of online learning is flexibility! Right?

In summary: I figure this class is about as good as online learning will get. The instructor is very clear; the assignments are fair and useful. I would have done a few things differently, but nothing is ever perfect. This is a good class for anyone wanting to know the basics of machine learning. Four stars.

автор: Saideep G

Apr 09, 2019

Very well made, well paced. Better than majority of college courses. Some errors do pop up midway through the course that should be addressed. It can be frustrating to push through these issues sometimes but they are the only thing keeping from 5 stars.

автор: MAHESH Y

Apr 09, 2019

it is one of the best course for beginners in machine learning, the only thing it lacks is its python implementation. If there is the python implementation of this course then no other course is better than this one

автор: Doreen B

Jun 09, 2019

Well explained, at the end of this course you will understand the subject and hold coherent conversations about it. Matlab implementation relatively simple, maybe too much so. Highly recommended course.

автор: Mohd F

Nov 08, 2018

There is a lot to say about you Andrew sir but in few words - "Thank you very much for teaching us the ML concepts in such a beautiful manner "

автор: Mehdi E F

Mar 19, 2019

Very instructive course.

Thank you.

It would have been great to get an OCR exercice at the end.

автор: Nils W

Mar 23, 2019

Great course, but the sound quality is quite bad.

автор: Sai V P

Aug 05, 2019

Better upgrade from matlab to Python

автор: Alexey M

Apr 10, 2020

Well, this course has at least 3 undeniable cons:

1. It exist;

2. It offers certificate for reasonable and affordable price;

3. It has "Stanford" in title.

Still, it could be improved in many ways.

First of all, it has poor video and audio quality, maybe worst I've personally seen in MOOC. Dear Stanford! Professor Ng is cool, give him room with windows, 1080p camera and microphone! Even less famous educational establishments can afford it.

Second, subtitles are also poor. English is not my native language but I dropped subs in my language after first try. English subtitles also have a lot of errors: many words are garbled with homonyms; I'm lucky to have some background in course theme and without it I would be completely lost trying to understand what's even going on.

Third, I think this and many other courses are suffering from past teaching system and experience. What is classical teaching system? There is lecturer narrating and writing on the board, sometimes showing something; there are students listening and taking notes. Well, still better than "watch your master working, nothing will be explained" method (still present in some cultures), but what century it is? XVII, XIX? We are learning "Machine Learning" via Internet, and watching materials being hand-written in process? Seriously? Even basic HTML skills in this days are enough to show formula, where you can get reminders of it's every part by simply moving cursor on it (Wikipedia is one example). After two weeks break in learning it will be very effective way to remember fast "what's going on, why this formula is so big and what the hell is that squiggle", and learning process will be improved greatly.

Little more HTML effort, and there will be way to live demonstrate curves, planes and how different parameters affect them; it will be possible to let students experiment while learning which is great improvement for learning, memorizing and understanding.

These are just examples, but hopefully my point is clear.

Quizes are too easy, solvable with "hey he just said that" method and some intuition, not require deep understanding.

Programming assignments are well prepared and explained, but programming materials amount is not enough for me.

Thank you professor Ng for your efforts!