Chevron Left
Вернуться к Structuring Machine Learning Projects

Отзывы учащихся о курсе Structuring Machine Learning Projects от партнера deeplearning.ai

4.8
звезд
Оценки: 44,705
Рецензии: 5,063

О курсе

You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been taught elsewhere, and is drawn from my experience building and shipping many deep learning products. This course also has two "flight simulators" that let you practice decision-making as a machine learning project leader. This provides "industry experience" that you might otherwise get only after years of ML work experience. After 2 weeks, you will: - Understand how to diagnose errors in a machine learning system, and - Be able to prioritize the most promising directions for reducing error - Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance - Know how to apply end-to-end learning, transfer learning, and multi-task learning I've seen teams waste months or years through not understanding the principles taught in this course. I hope this two week course will save you months of time. This is a standalone course, and you can take this so long as you have basic machine learning knowledge. This is the third course in the Deep Learning Specialization....

Лучшие рецензии

JB
1 июля 2020 г.

While the information from this course was awesome I would've liked some hand on projects to get the information running. Nonetheless, the two simulation task were the best (more would've been neat!).

AM
22 нояб. 2017 г.

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

Фильтр по:

3226–3250 из 5,013 отзывов о курсе Structuring Machine Learning Projects

автор: Raghav G

13 июля 2020 г.

A very good course.

автор: Tapasya s

17 июня 2020 г.

its really helpfull

автор: Daspute J S

2 июня 2020 г.

It's great teaching

автор: Enrique C

28 мая 2020 г.

It's a great course

автор: Chinmaya H

8 дек. 2019 г.

Good for beginners!

автор: Arnav B

13 июля 2019 г.

thank you Andrew Ng

автор: SAHADEVAREDDY A S

15 июня 2019 г.

Really very helpful

автор: Saah N T G

27 апр. 2019 г.

I liked interviews!

автор: Dylan S

19 апр. 2019 г.

Critical to success

автор: Bạch T T

3 мар. 2019 г.

it's good. but hard

автор: Ayush S

2 февр. 2019 г.

As usual TOP NOTCH.

автор: Bogdan S

4 нояб. 2018 г.

Practical insights!

автор: Romain B

12 сент. 2018 г.

Totally outstanding

автор: Yao Z

22 авг. 2018 г.

非常有用的的一门课,尤其是调参,那一节

автор: Azamat K

7 авг. 2018 г.

Very useful course.

автор: ZE H

10 июля 2018 г.

Very helpful stuff!

автор: Saurabh, I B

13 июня 2018 г.

Thank you Coursera!

автор: Mohamed H Y

8 мая 2018 г.

very helpful course

автор: SUN H

24 февр. 2018 г.

Easy understandable

автор: Jinil C S

2 февр. 2018 г.

Good. Learned a lot

автор: Changyao C

10 янв. 2018 г.

Andrew is the best!

автор: 蜗牛爱上星星

4 янв. 2018 г.

从实际项目的角度讲解机器学习,很实用。

автор: Devashish S

11 дек. 2017 г.

Excellent insights!

автор: Eranda B

21 нояб. 2017 г.

Professor Andrew <3

автор: Jin M

29 окт. 2017 г.

Very Good and Deep.