Este curso se enfoca en aprovechar la flexibilidad y facilidad de uso de TensorFlow 2.x y Keras para compilar, entrenar e implementar modelos de aprendizaje automático. Aprenderá sobre la jerarquía de la API de TensorFlow 2.x y conocerá los componentes principales de TensorFlow mediante ejercicios prácticos. Le mostraremos cómo trabajar con conjuntos de datos y columnas de atributos. Aprenderá a diseñar y compilar una canalización de datos de entrada de TensorFlow 2.x. Adquirirá experiencia práctica en la carga de arreglos de NumPy, imágenes y datos de texto con tf.data.Dataset, así como de datos de CSV con Pandas. También adquirirá experiencia práctica en la creación de columnas de atributos numéricas, categóricas, agrupadas en depósitos y con hash.
Этот курс входит в специализацию ''Специализация Machine Learning with TensorFlow on Google Cloud en Español'
от партнера
Об этом курсе
от партнера

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Программа курса: что вы изучите
Introducción al curso
Este curso es una introducción a TensorFlow 2.x, que incorpora la facilidad de uso de Keras para compilar modelos de aprendizaje automático. En este curso, se abarcarán el diseño y la compilación de una canalización de datos de entrada de TensorFlow 2.x., la compilación de modelos de aprendizaje automático con TensorFlow 2.x y Keras, la mejora en la exactitud de estos modelos y su correspondiente escritura para una utilización escalada.
Introducción a TensorFlow
Le mostraremos el nuevo paradigma de TensorFlow 2.x. Aprenderá sobre la jerarquía de la API de TensorFlow y conocerá los componentes principales de TensorFlow, los tensores y las variables, mediante ejercicios prácticos.
Diseñe y compile una canalización de datos de entrada de TensorFlow
Le mostraremos cómo trabajar con conjuntos de datos y columnas de atributos. Adquirirá experiencia práctica en la carga de arreglos de NumPy, imágenes y datos de texto con tf.data.Dataset, así como de datos de CSV con Pandas. También adquirirá experiencia práctica en la creación de columnas de atributos numéricas, categóricas, agrupadas en depósitos y con hash.
Entrenamiento de redes neuronales con TensorFlow 2 y la API secuencial de Keras
En este módulo, le mostraremos cómo escribir modelos de TensorFlow con la API secuencial de Keras, pero, antes de sumergirnos en la escritura del modelo, hablaremos sobre las funciones de activación, pérdida y optimización. Luego, se le presentará la API secuencial de Keras para mostrarle cómo crear modelos de aprendizaje profundo. Además, aprenderá a implementar el modelo para la predicción en la nube.
Рецензии
- 5 stars56,45 %
- 4 stars33,06 %
- 3 stars8,06 %
- 2 stars0,80 %
- 1 star1,61 %
Лучшие отзывы о курсе INTRO TO TENSORFLOW EN ESPAÑOL
Excellent course, was sohard for me but I'm happy that finished and learn so mucho.
Es un interesante tema, en este curso entendi mejor el flujo de trabajo con tensorflow y CMLE.
There are several elements regarding the labs that can be updated since I got problems that seem to be due to the versions of python or Tensorflow.
Los ejercicios prácticos refuerzan mucho lo aprendido en los videos, el contenido es bastante bueno y las explicaciones son bastante simples de entender.
Специализация Machine Learning with TensorFlow on Google Cloud en Español: общие сведения
¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? ¿Cuáles son las cinco fases para convertir un posible caso práctico en un recurso que pueda aprovechar la tecnología de aprendizaje automático? ¿Por qué es importante no saltarse fases? ¿Por qué las redes neuronales son tan populares? ¿Cómo plantear un problema de aprendizaje supervisado y encontrar una buena solución generalizable mediante un descenso de gradientes y una forma meditada de crear conjuntos de datos? Aprenda a escribir modelos de aprendizaje automático distribuido que escalen en Tensorflow y que brinden predicciones de alto rendimiento. Convierta los datos sin procesar en funciones de una forma que permita al AA aprender características importantes de los datos y aportar una percepción humana para abordar los problemas. Por último, aprenda a incorporar la combinación adecuada de parámetros que desarrolle modelos generalizados y exactos, y conozca la teoría para solucionar determinados tipos de problemas de AA. Experimentará con el AA de extremo a extremo, a partir de la construcción de una estrategia centrada en el AA y el avance hacia el entrenamiento, optimización y producción de modelos con labs prácticos mediante Google Cloud Platform.

Часто задаваемые вопросы
Можно ли ознакомиться с курсом до регистрации?
Что я получу, зарегистрировавшись на курс?
Когда я получу сертификат о прохождении курса?
Почему я не могу прослушать этот курс?
Можно ли получить финансовую помощь?
Остались вопросы? Посетите Центр поддержки учащихся.