Об этом курсе
Недавно просмотрено: 3,113

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 7 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 2-5 hours/week...

Английский

Субтитры: Английский

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 7 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 2-5 hours/week...

Английский

Субтитры: Английский

Программа курса: что вы изучите

Неделя
1
2 ч. на завершение

Why Data Quality Matters

In this module, you will be able to define data quality and what drives it. You'll be able to recall and describe four key aspects of data quality. You'll be able to explain why data quality is important for operations, for patient care, and for the finances of healthcare providers. You'll be able to discuss how data may change over time, and how finding those changes allows us to recognize and work with the issues the changes cause. You will be able to explain why requirements for data quality depend on how we intend to use that data and understand four levels of quality that may be applied for different kinds of analysis. You will also be able to discuss how all of this supports our ability to do our best work in the best ways possible.

...
6 видео ((всего 34 мин.)), 2 материалов для самостоятельного изучения, 1 тест
6 видео
Module 1 Introduction2мин
Why Data is Collected and Defining Quality3мин
Why Data Quality Matters, Part 17мин
Why Data Quality Matters, Part 29мин
How Data Quality Assessment Varies in Different Data Uses7мин
2 материала для самостоятельного изучения
A Note From UC Davis10мин
Data quality assessment for comparative effectiveness research in distributed data networks30мин
1 практическое упражнение
Module 1 Quiz30мин
Неделя
2
4 ч. на завершение

Measuring Data Quality

This module focuses on measuring data quality. After this module, you will be able to describe metadata, list what metadata may include, give some examples of metadata and recall some of its uses as it relates to measuring data quality. We will describe data provenance to explains how knowing the origin of a data set can help data analysts determine if a data set is suitable for a particular use. We’ll also describe 5 components of data quality you can recall and use when evaluating data. You will also learn to be able to distinguish between data verification and validation, recalling 4 applicable data validation methods and 3 concepts useful to validate data. In addition to your video lessons, you will read and discuss a scholarly article on Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. We wrap up the module with a framework abbreviated as S-B-A-R that is often used in healthcare team situations to communicate about issues that must be solved.

...
7 видео ((всего 34 мин.)), 1 материал для самостоятельного изучения, 1 тест
7 видео
Describing Metadata in Healthcare4мин
Data Provenance in Healthcare4мин
Components of Data Quality4мин
Data Validation Methods5мин
A Framework for Validating and Verifying Data6мин
The SBAR Methodology7мин
1 материал для самостоятельного изучения
Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research45мин
1 практическое упражнение
Module 2 Quiz30мин
Неделя
3
2 ч. на завершение

Monitoring, Managing and Improving Data Quality

In this module, we focus on monitoring, managing, and improving data quality. You will be able to explain how to monitor data on a day-to-day basis to see that it remains consistent. You will explain how measures can help us monitor the patient health and the quality of care they receive over time. Also, you will be able to discuss establishing the culture of quality throughout the data lifecycle and improving data quality from the baseline by posing questions to determine a baseline of data quality. You will be able to manage data quality through expected and unexpected changes, along with tracking monitoring strategies along the data pipeline. After this module, you will be able to identify and fix common deficiencies in the data and implement change control systems as a monitoring tool. You’ll also recall several best practices you can apply on the job to monitor data quality in the healthcare field.

...
5 видео ((всего 27 мин.)), 2 материалов для самостоятельного изучения, 1 тест
5 видео
Establishing the Culture of Quality throughout the Data Lifecycle4мин
Improving Data Quality from the Baseline7мин
Managing Data Quality: Expected and Unexpected Changes5мин
Monitoring Strategies Along the Data Pipeline8мин
2 материала для самостоятельного изучения
Managing Chaos Part 1: Putting a Change Control Process in Place15мин
Managing Chaos Part 2: Change Control Decision Making15мин
1 практическое упражнение
Module 3 Quiz30мин
Неделя
4
5 ч. на завершение

Sustaining Quality through Data Governance

IIn this module, we focus on sustaining quality through data governance. We will define data governance and consider why it matters in healthcare. You will discuss who makes up data governance committees, how these committees function relative to data analysts and describe how stakeholders work together to ensure data quality. You’ll be able to describe how high-quality data is a valuable asset for any business. You will also define data governance systems. You will recall several ways data can be repurposed and explain how data governance maintains data quality as it is repurposed for a use other than that for which it was originally gathered. In addition to your video lessons, you will read and discuss the article, Big Data, Bigger Outcomes and practice applying some of these important concepts.

...
6 видео ((всего 28 мин.)), 3 материалов для самостоятельного изучения, 2 тестов
6 видео
Defining Data Governance in Healthcare5мин
Why Data Governance Matters in Healthcare8мин
Data Governance Committees in Healthcare6мин
Data Governance Systems in Healthcare5мин
Course Summary58
3 материала для самостоятельного изучения
Big Data, Bigger Outcomes30мин
Welcome to Peer Review Assignments!10мин
Why Doctors Hate Their Computers50мин
1 практическое упражнение
Module 4 Quiz30мин

Преподаватели

Avatar

Doug Berman

Director, Data Acquisition and Architecture
UC Davis Health System

О Калифорнийский университет в Девисе

UC Davis, one of the nation’s top-ranked research universities, is a global leader in agriculture, veterinary medicine, sustainability, environmental and biological sciences, and technology. With four colleges and six professional schools, UC Davis and its students and alumni are known for their academic excellence, meaningful public service and profound international impact....

О специализации ''Health Information Literacy for Data Analytics'

This Specialization is intended for data and technology professionals with no previous healthcare experience who are seeking an industry change to work with healthcare data. Through four courses, you will identify the types, sources, and challenges of healthcare data along with methods for selecting and preparing data for analysis. You will examine the range of healthcare data sources and compare terminology, including administrative, clinical, insurance claims, patient-reported and external data. You will complete a series of hands-on assignments to model data and to evaluate questions of efficiency and effectiveness in healthcare. This Specialization will prepare you to be able to transform raw healthcare data into actionable information....
Health Information Literacy for Data Analytics

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.