Об этом курсе

Недавно просмотрено: 33,022

Learner Career Outcomes

50%

начал новую карьеру, пройдя эти курсы

47%

получил значимые преимущества в карьере благодаря этому курсу

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 21 часа на выполнение

Предполагаемая нагрузка: 11 hours/week...

Английский

Субтитры: Английский, Французский

Learner Career Outcomes

50%

начал новую карьеру, пройдя эти курсы

47%

получил значимые преимущества в карьере благодаря этому курсу

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 21 часа на выполнение

Предполагаемая нагрузка: 11 hours/week...

Английский

Субтитры: Английский, Французский

Программа курса: что вы изучите

Оценка контентаThumbs Up84%(1,208 оценки)Info
Неделя
1

Неделя 1

3 ч. на завершение

Artificial Intelligence & Machine Learning

3 ч. на завершение
11 видео ((всего 75 мин.)), 3 материалов для самостоятельного изучения, 1 тест
11 видео
Specialization Objectives8мин
Specialization Prerequisites7мин
Artificial Intelligence and Machine Learning, Part I6мин
Artificial Intelligence and Machine Learning, Part II7мин
Machine Learning as a Foundation of Artificial Intelligence, Part I5мин
Machine Learning as a Foundation of Artificial Intelligence, Part II7мин
Machine Learning as a Foundation of Artificial Intelligence, Part III7мин
Machine Learning in Finance vs Machine Learning in Tech, Part I6мин
Machine Learning in Finance vs Machine Learning in Tech, Part II6мин
Machine Learning in Finance vs Machine Learning in Tech, Part III8мин
3 материала для самостоятельного изучения
The Business of Artificial Intelligence30мин
How AI and Automation Will Shape Finance in the Future30мин
A. Geron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow”, Chapter 130мин
1 практическое упражнение
Module 1 Quiz30мин
Неделя
2

Неделя 2

6 ч. на завершение

Mathematical Foundations of Machine Learning

6 ч. на завершение
6 видео ((всего 45 мин.)), 3 материалов для самостоятельного изучения, 2 тестов
6 видео
The No Free Lunch Theorem7мин
Overfitting and Model Capacity8мин
Linear Regression7мин
Regularization, Validation Set, and Hyper-parameters10мин
Overview of the Supervised Machine Learning in Finance3мин
3 материала для самостоятельного изучения
I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, Chapters 4.5, 5.1, 5.2, 5.3, 5.4
Leo Breiman, “Statistical Modeling: The Two Cultures”
Jupyter Notebook FAQ10мин
1 практическое упражнение
Module 2 Quiz15мин
Неделя
3

Неделя 3

6 ч. на завершение

Introduction to Supervised Learning

6 ч. на завершение
7 видео ((всего 75 мин.)), 4 материалов для самостоятельного изучения, 2 тестов
7 видео
A First Demo of TensorFlow11мин
Linear Regression in TensorFlow10мин
Neural Networks11мин
Gradient Descent Optimization10мин
Gradient Descent for Neural Networks12мин
Stochastic Gradient Descent8мин
4 материала для самостоятельного изучения
A.Geron, “Hands-On ML”, Chapter 9, Chapter 4 (Gradient Descent)
E. Fama and K. French, “Size and Book-to-Market Factors in Earnings and Returns”, Journal of Finance, vol. 50, no. 1 (1995), pp. 131-155.15мин
J. Piotroski, “Value Investing: The Use of Historical Financial Statement Information to Separate Winners from Losers”, Journal of Accounting Research, Vol. 38, Supplement: Studies on Accounting Information and the Economics of the Firm (2000), pp. 1-4115мин
Jupyter Notebook FAQ10мин
1 практическое упражнение
Module 3 Quiz15мин
Неделя
4

Неделя 4

10 ч. на завершение

Supervised Learning in Finance

10 ч. на завершение
9 видео ((всего 66 мин.)), 4 материалов для самостоятельного изучения, 3 тестов
9 видео
Fundamental Analysis7мин
Machine Learning as Model Estimation8мин
Maximum Likelihood Estimation10мин
Probabilistic Classification Models6мин
Logistic Regression for Modeling Bank Failures, Part I8мин
Logistic Regression for Modeling Bank Failures, Part II5мин
Logistic Regression for Modeling Bank Failures, Part III8мин
Supervised Learning: Conclusion2мин
4 материала для самостоятельного изучения
C. Bishop, “Pattern Recognition and Machine Learning”, Chapters 4.1, 4.2, 4.3
A. Geron, “Hands-On ML”, Chapters 3, Chapter 4 (Logistic Regression)
Jupyter Notebook FAQ10мин
Jupyter Notebook FAQ10мин
1 практическое упражнение
Module 4 Quiz21мин
3.8
Рецензии: 138Chevron Right

Лучшие отзывы о курсе Guided Tour of Machine Learning in Finance

автор: KDAug 24th 2019

Introduction of ML for Financial application with combination of Scikit learn, Statsmodels and Tensorflow with neuralnets made this class very interesting. Learned and Enjoyed lot.

автор: ABMay 28th 2018

Exceptional disposition and lucid explanations! Ideal for a Risk Management professional to sharpen machine learning skills!

Преподаватели

Оценка преподавателя3.64/5 (оценок: 15)Info
Изображение преподавателя Igor Halperin

Igor Halperin 

25,844 учащегося
4 курса

от партнера

Логотип Школа инженерии Тандон Нью-Йоркского университета

Школа инженерии Тандон Нью-Йоркского университета

Специализация Machine Learning and Reinforcement Learning in Finance: общие сведения

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3) successfully implementing a solution, and assessing its performance. The specialization is designed for three categories of students: · Practitioners working at financial institutions such as banks, asset management firms or hedge funds · Individuals interested in applications of ML for personal day trading · Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance. The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance....
Machine Learning and Reinforcement Learning in Finance

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.