Об этом курсе
4.3
Оценки: 91
Рецензии: 26
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Продвинутый уровень

Продвинутый уровень

Часов на завершение

Прибл. 45 часа на выполнение

Предполагаемая нагрузка: 9 weeks of study, 4-8 hours/week...
Доступные языки

Английский

Субтитры: Английский...
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Продвинутый уровень

Продвинутый уровень

Часов на завершение

Прибл. 45 часа на выполнение

Предполагаемая нагрузка: 9 weeks of study, 4-8 hours/week...
Доступные языки

Английский

Субтитры: Английский...

Программа курса: что вы изучите

Неделя
1
Часов на завершение
23 минуты на завершение

Introduction

This is just a two-minutes advertisement and a short reference list....
Reading
1 видео (всего 3 мин.), 2 материалов для самостоятельного изучения
Video1 видео
Reading2 материала для самостоятельного изучения
Introduction/Manual10мин
References10мин
Часов на завершение
2 ч. на завершение

Week 1

We introduce the basic notions such as a field extension, algebraic element, minimal polynomial, finite extension, and study their very basic properties such as the multiplicativity of degree in towers....
Reading
6 видео (всего 84 мин.), 1 тест
Video6 видео
1.2 Algebraic elements. Minimal polynomial.12мин
1.3 Algebraic elements. Algebraic extensions.14мин
1.4 Finite extensions. Algebraicity and finiteness.14мин
1.5 Algebraicity in towers. An example.14мин
1.6. A digression: Gauss lemma, Eisenstein criterion.13мин
Quiz1 практическое упражнение
Quiz 112мин
Неделя
2
Часов на завершение
1 ч. на завершение

Week 2

We introduce the notion of a stem field and a splitting field (of a polynomial). Using Zorn's lemma, we construct the algebraic closure of a field and deduce its unicity (up to an isomorphism) from the theorem on extension of homomorphisms....
Reading
5 видео (всего 67 мин.), 1 тест
Video5 видео
2.2 Splitting field.11мин
2.3 An example. Algebraic closure.14мин
2.4 Algebraic closure (continued).15мин
2.5 Extension of homomorphisms. Uniqueness of algebraic closure.11мин
Quiz1 практическое упражнение
QUIZ 212мин
Неделя
3
Часов на завершение
2 ч. на завершение

Week 3

We recall the construction and basic properties of finite fields. We prove that the multiplicative group of a finite field is cyclic, and that the automorphism group of a finite field is cyclic generated by the Frobenius map. We introduce the notions of separable (resp. purely inseparable) elements, extensions, degree. We briefly discuss perfect fields. This week, the first ungraded assignment (in order to practice the subject a little bit) is given. ...
Reading
6 видео (всего 82 мин.), 1 материал для самостоятельного изучения, 1 тест
Video6 видео
3.2 Properties of finite fields.14мин
3.3 Multiplicative group and automorphism group of a finite field.15мин
3.4 Separable elements.15мин
3.5. Separable degree, separable extensions.15мин
3.6 Perfect fields.9мин
Reading1 материал для самостоятельного изучения
Ungraded assignment 110мин
Quiz1 практическое упражнение
QUIZ 38мин
Неделя
4
Часов на завершение
2 ч. на завершение

Week 4

This is a digression on commutative algebra. We introduce and study the notion of tensor product of modules over a ring. We prove a structure theorem for finite algebras over a field (a version of the well-known "Chinese remainder theorem")....
Reading
6 видео (всего 91 мин.), 1 тест
Video6 видео
4.2 Tensor product of modules14мин
4.3 Base change14мин
4.4 Examples. Tensor product of algebras.15мин
4.5 Relatively prime ideals. Chinese remainder theorem.14мин
4.6 Structure of finite algebras over a field. Examples.16мин
Quiz1 практическое упражнение
QUIZ 410мин
4.3
Рецензии: 26Chevron Right

Лучшие рецензии

автор: CLJun 16th 2016

Outstanding course so far - a great refresher for me on Galois theory. It's nice to see more advanced mathematics classes on Coursera.

Преподаватель

Avatar

Ekaterina Amerik

Professor
Department of Mathematics

О National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communications, IT, mathematics, engineering, and more. Learn more on www.hse.ru...

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Оплатив сертификацию, вы получите доступ ко всем материалам курса, включая оцениваемые задания. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.