Chevron Left
Вернуться к Дискретная математика: подсчеты, графы, случайные блуждания

Отзывы учащихся о курсе Дискретная математика: подсчеты, графы, случайные блуждания от партнера Национальный исследовательский университет "Высшая школа экономики"

О курсе

Основная цель курса — дать введение в разделы дискретной математики, важные для анализа данных. Мы начнем с краткого введения в комбинаторику, раздел математики, изучающий подсчеты. Основы комбинаторики критически важны для всех, кто работает в анализе данных или в Computer Science. В качестве примеров использования комбинаторики мы обсудим вопросы о подсчете размера пространства признаков и об оценке времени работы программ на Python. После этого мы используем наши знания в комбинаторике в изучении дискретной вероятности. Вероятностью в области анализа данных пронизано абсолютно все, и мы еще изучим этот раздел математики в одном из следующих курсов гораздо подробнее. В этом курсе в части вероятности наша цель — дать первоначальное знакомство с этой областью, а также дать нам возможность использовать вероятность в следующей части курса. Наконец, в третьей части курса мы обсудим комбинаторную структуру, наиболее часто встречающуюся в анализе данных — графы. Графы встречаются повсюду, как в анализе данных, так и в обычной жизни, и мы увидим это на разнообразных примерах. Мы дадим необходимые сведения из теории графов, а в конце курса выполним проект, а именно построим несложную рекомендательную систему, основанную на случайных блужданиях в графах....
Фильтр по: