Chevron Left
Вернуться к Визуализация данных

Отзывы учащихся о курсе Визуализация данных от партнера Иллинойсский университет в Урбане-Шампейне

4.5
звезд
Оценки: 1,289

О курсе

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern discovery in data mining. We will also introduce methods for pattern-based classification and some interesting applications of pattern discovery. This course provides you the opportunity to learn skills and content to practice and engage in scalable pattern discovery methods on massive transactional data, discuss pattern evaluation measures, and study methods for mining diverse kinds of patterns, sequential patterns, and sub-graph patterns....

Лучшие рецензии

GC

16 нояб. 2020 г.

Very useful course. It enlightens my ways to data visualization. I knew some concepts, but in a disorganized way and not knowing how. This course fills these gaps. It is tremendously helpful.

MK

5 апр. 2018 г.

Good course, very well structured and with interesting assignments. Some (especially first) lessons are more of a general culture but most are very helpful and allow to learn a lot of things.

Фильтр по:

176–200 из 292 отзывов о курсе Визуализация данных

автор: Rajarshee D

8 июля 2016 г.

Fantastic !

автор: HARSHIT R

27 мар. 2021 г.

good tutor

автор: reza p

3 окт. 2019 г.

so usefull

автор: Павлов Ю А

17 апр. 2019 г.

COoOooOOoL

автор: Kamlesh C

2 авг. 2020 г.

THank you

автор: sandyb4u

14 апр. 2020 г.

very nice

автор: Mouli D

20 сент. 2019 г.

excellent

автор: zhaowen

28 июля 2016 г.

入门课程,比较简单

автор: Gabriel A D S

18 апр. 2020 г.

Amazing!

автор: Hernan C V

20 мар. 2017 г.

Awesome!

автор: Goya Z

15 июня 2016 г.

真的能学到东西。

автор: Dr. S N B

17 июня 2021 г.

Awesome

автор: Mohamed B

28 июля 2017 г.

amazing

автор: Xinwei L

2 мая 2016 г.

so cool

автор: Gonzalo R

4 окт. 2018 г.

Great

автор: VUSTELA M R

26 февр. 2021 г.

good

автор: 221810310038 M S S

2 февр. 2021 г.

good

автор: KANDERABOINA M

29 янв. 2021 г.

good

автор: Hamreet s

29 мар. 2019 г.

nice

автор: Mojahid I

29 авг. 2016 г.

Cool

автор: Anitha A

15 июня 2020 г.

..

автор: Py C

1 апр. 2022 г.

It's a good coursem thank you!! Two little suggestions, (1) for the homework, if we could get more feedback from teacher, or if there are some more specific target for the assignment, that would be easier to design a automatic robat to let us have an initial comments if we meet the criteria of the assignment. If so, that would be great. (2) I don't understand very much on the network graph and the purpose of that. So I need to search other paper to learn that. If there could be more example or teach us how to read the graph but not how to choose the tool, that will be great! Thank you very much!!

автор: Qinjian Z

26 мар. 2020 г.

The course is very helpful for me to learn the concepts and theories behind the data visualization, combining with 2 interesting and relevant assignments to enchance the learning experience.

One thing I found difficult was the instructions in Assignment 2 for non-programmer to perform data visualization, the software might not be available due to the reform of the website, I wish the professor could update the information.

автор: Cem A

21 нояб. 2016 г.

I think the course is nice in general but I have one comment. I think there is too much information in the course videos and sometimes it is really hard to follow the video if you want to take notes. It would have been much better if the instructor gave some time between the slides for the watchers to digest. He doesn't have to stop but he could slowly go through a set of examples, even 30-60 secs would help.

автор: Rob W

6 авг. 2019 г.

Good course overal.

There is quite a mix of high level and very low level detail - e.g how humans percieve data in visuals (interesting and useful) but not down in the detail - other sections on of planar and non-planar graphs and buliding out matrix with signficant detail.

The quizzes and assignments are well balanced between the detail and the high level area.