Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

Оценки: 33,154

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools

(рецензий: 243)

Introductory course

(рецензий: 1056)

Лучшие рецензии


14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.


7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

Фильтр по:

6576–6600 из 6,981 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Chris B

25 авг. 2017 г.

I was a fan but I loathe the fact you cannot review the quizzes.

автор: Christian C

1 мар. 2017 г.

Good for a beginners course, could be a little more challenging.

автор: Mikołaj

2 июля 2019 г.

Good course, but in 4 weeks you will get only basics of basics.

автор: Akash G

8 мая 2018 г.

Course is good but I personally feel that course lacks content.

автор: Aldy S D R

18 февр. 2018 г.

I have a problem with the sound. That quality is so bad I think

автор: ANURAG D

26 сент. 2017 г.

The course is way too basic and can be completed within 2 hours

автор: Marcio H M

31 авг. 2016 г.

This one is just a warm up for the Data Science Specialization.

автор: Amar H

19 апр. 2020 г.

please improve the whole layout. introductions and so forth.


автор: Douglas P

27 июня 2016 г.

It's a good preview, but very little is actually learned here.

автор: 30_Pirthvi H G

2 авг. 2020 г.

Not informative as expected. Please include more information.

автор: Ja-Eun L

6 июня 2018 г.

Not sure it can constitute as one course - was helpful though

автор: SONDECK L

13 окт. 2016 г.

Interesting, but could be improved with further applications.

автор: planktons c

22 мая 2016 г.

Not much content for this course, can be done in a few hours.

автор: Pablo G

14 мая 2016 г.

great content, a little long course for the provided content

автор: Prazzal D

2 мая 2020 г.

This course was too much theoritical but was a good course

автор: William E

13 февр. 2016 г.

Very basic if one has already worked with software before.

автор: Sameer

21 сент. 2020 г.

Some of the quiz questions are just useless and annoying.

автор: Pedro J H M

6 нояб. 2017 г.

A brief and easy introduction.

It should not be mandatory.

автор: jhalak g

10 окт. 2017 г.

would like to have more detailed and interactive sessions

автор: BILASH P

4 июня 2020 г.

This course is good. But automated video is so annoying.

автор: Jacob P

1 июля 2019 г.

Seems to be somewhat useless in terms of actual content

автор: Anandwade N

25 февр. 2018 г.

give you good basic for data science and tools required

автор: Joshua K

5 июля 2017 г.

Pretty Basic, but helps get you in the swing of things.

автор: PRABHAT K

9 июня 2017 г.

Good for understanding tool and how to work with Github

автор: Avi C

20 июля 2016 г.

Just an intro and learning a bit about Git and Git hub.