Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

Оценки: 31,406
Рецензии: 6,678

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

5201–5225 из 6,533 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Mycal B

25 мар. 2016 г.

Good course, but it needs to be more difficult and more in depth.

автор: Manohar E

25 янв. 2021 г.

This is good program to start getting knowledge in Data science.

автор: Germán A P J

11 июля 2020 г.

muy bueno, pero deberia estar tambien con subtitulos es español.

автор: SUVVARI P

30 мая 2020 г.

i have completed my course and not get my certififcate till now

автор: Raj T

25 апр. 2020 г.

I got to learn new things which made me do better in DataScience

автор: Abdul S

15 апр. 2020 г.

A good introduction for getting started as data scientist and R.

автор: kopila P

14 окт. 2019 г.

It's a good start for people who are really new to data science.

автор: Ying T L

2 окт. 2018 г.

Hope there could be more demonstrations of the use of the tools.

автор: Mike Y

17 сент. 2017 г.

Good starting point, tool download, etc. Like the online format

автор: Gautam D

24 янв. 2017 г.

Very basic but needed for people not introduced to R! Thank you!

автор: Yeshar H

24 окт. 2016 г.

I would've liked some practical assignments on using Git/Github.

автор: Francesca I

12 мая 2016 г.

I think you have to say more about git commands and their syntax

автор: Victor N C G

26 мар. 2016 г.

I expected more detailed use of Github - otherwise great course.

автор: Syed A H R

10 июля 2020 г.

Good But, I would prefer if a person teaches rather than a bot.

автор: Abdellah D E B

23 июня 2020 г.

It's greate work, but i prefer the human voice than robot's one

автор: Rishabh

6 июня 2020 г.

nice and difficult to deal with r and github for the first time

автор: Rohit k

28 мая 2020 г.

Better than reading a book. worse than a classroom study though

автор: Chong C

10 мая 2019 г.

Good for beginners, but the machine voice is a little annoying,

автор: Yunye H

8 сент. 2018 г.

A brief introduction into data science and commonly used tools.

автор: Paul J

26 июня 2017 г.

Great intro; very basic; could have more content in one course.

автор: Olivier G

17 авг. 2016 г.

I would have liked more information and a broader understanding

автор: am

10 апр. 2016 г.

It shows the major tools to use in real life to program with R.

автор: clinton

22 янв. 2016 г.

This course is a great introductory course for data scientists.

автор: Alessandra B

1 мар. 2021 г.

os videos nao sao bem feitos, muito robóticos e nada didático.

автор: Alvar M

27 окт. 2020 г.

Very introductory but sets the path for more interesting stuff