Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

Оценки: 33,075
Рецензии: 7,064

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools

(рецензий: 243)

Introductory course

(рецензий: 1056)

Лучшие рецензии


7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.


14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

5201–5225 из 6,961 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Michael M

21 сент. 2017 г.

Should be able to optionally select viewing the Mac or Windows installation videos.

There are no videos for linux users.

автор: Jeffrey P

8 июня 2016 г.

Good overview of the specialization. Probably very good for someone new to R and software development tools in general.

автор: Herman A

15 апр. 2016 г.

Assignments are useful, background is interesting, but meat of it is nothing you can't get from googling "Data Science"

автор: Andrés C

1 июля 2020 г.

Excelente curso. Yo ya soy usuario de RStudio y he aprendido bastante, especialmente del versionamiento de mi código.

автор: Abrantes A S F

21 окт. 2017 г.

The really great material were in Week 3. The first 2 weeks are too basic for anyone with at least some IT background.

автор: Mariela M

6 мар. 2017 г.

El curso me parece excelente, pero tuve problemas con la plataforma, me borró todo lo que hice e incluso había pagado.

автор: Babangida I B

18 авг. 2020 г.

The content of the course is quite enriching. Besides the robotic voice, I enjoy every bit of the course interaction.

автор: Kevin D

4 апр. 2019 г.

A decent survey of the material, which hopefully follows. A good but almost too easy class for such a deep subject.

автор: Parth S

25 янв. 2017 г.

Course content is good. I was able to get the basic understanding of git and github and also understood how it works.

автор: Lorenzo F

5 июля 2017 г.

It helps you to start, so installing software and so on. I recommend you to try applying for financial aid for this.

автор: Tran H H T

21 февр. 2016 г.

Slides and videos are a bit insufficient in order to finish course projects.

Apart from that, this course is awesome!

автор: Jesus V M

5 нояб. 2020 г.

Although it does not affect the learning experience, the robot voice in the videos is a bit annoying, to be honest.

автор: Mike W

12 апр. 2020 г.

Easy introductory course. Good foundational knowledge. First time using R Studio, Rmarkdown, Github. Quite helpful.

автор: Ian R

31 окт. 2019 г.

While the material is fairly basic, it is still very useful to future courses in the series. A good place to start.

автор: Elijah L

24 окт. 2018 г.

Fine for what it was but really did not need to be its own course. Could have just been tacked on to R Programming.

автор: Roma R

2 сент. 2018 г.

Great course to launch yourself into the data science world. Content is brief and nicely designed to get you ready.

автор: Balamurugan

2 мая 2018 г.

Good Introductory course to dive into tools and materials for starting our journey on data analytics specialization

автор: Victoria P

19 окт. 2020 г.

Me pareció un curso bastante completo. Tuve algunas dificultades con el uso de Github pero aún así pude progresar.


28 июня 2020 г.

I expected more but this is really just basics and this is little bit bored because of the AI was the instructor..

автор: Sushmit R

24 июля 2017 г.

Well structured and easy to follow. Most importantly, the onus is placed on the student to explore and self-learn.

автор: Cristian B G

16 февр. 2016 г.

Buen curso sobre la iniciación a la ciencia de datos, las bases y las herramientas que se emplean para este mundo.

автор: Hannah G

16 янв. 2016 г.

A simple introduction. Easy to cover very quickly, however important to understand the basics before progressing.

автор: jihane h

24 февр. 2022 г.

it is a good overview but I found myself needing to go outside the source provided to learn about git for example

автор: Ming T

5 янв. 2021 г.

it introduces some very useful tools- such as version control with github, and the explanations are fairly clear.

автор: Dhiraj S

2 сент. 2020 г.

You'll install 'R', 'R Studio'.

Will link R Studio with GitHUB

Will learn certain steps as introduction.

[That's it]