Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

Оценки: 31,479
Рецензии: 6,691

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

Фильтр по:

5126–5150 из 6,549 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Supriya P

17 окт. 2016 г.

Informative. Making it more elaborate in terms of coding would be helpful.

автор: Rafael B S

27 сент. 2016 г.

This is a basic course but since this is what it is design to be it is ok.

автор: Nishant k

19 дек. 2017 г.

Its a good starting point for Data Science. Expected more content though!

автор: Engr M A

22 июля 2017 г.

I have really Enjoyed this course and Really Happy to Get the certificate

автор: anand v

19 июня 2017 г.

Detail tutorial on basic of Data scientist tools and good start up course

автор: Yolene D

6 апр. 2017 г.

Great way to get started on the Data Science course with the right tools.

автор: Irakli N

11 июля 2016 г.

It was good, well-executed course, but it was too basic. I expected more.

автор: Abeduddin B

22 сент. 2020 г.

if live instructor leads the class would be much helpful than auto video

автор: Elizabeth K

10 июля 2020 г.

Some quiz questions are a little out of data but overall a great course!

автор: KESHAV P

18 апр. 2020 г.


автор: Deena S

9 дек. 2018 г.

more hands on exercises (not just in the quiz) for Git would be helpful.

автор: Guillaume M

2 мая 2018 г.

very comprehensive and simple introduction to the basics of data science

автор: Chengde W

13 июня 2017 г.

Good start for the specialization. Did not like the peer review section.

автор: Felix H

17 окт. 2020 г.

I liked the emphasis on setting up for collaborative work using GitHub.

автор: Ingrid I S L

22 июля 2020 г.

Buen curso, ayuda a conocer diferentes herramientas para manejar datos.

автор: KANHU C P

9 мая 2020 г.

Best suited to beginners. U will get to know many informative concepts.

автор: Shubham R

16 янв. 2020 г.

More tools should be included in introduction such as python, hive etc.

автор: Alexandre S

28 апр. 2018 г.

Algumas informações estão desatualizadas o que dificulta o aprendizado.

автор: Mohammad A R B

26 мар. 2018 г.

This course is an excellent introduction for a Data Science enthusiast.

автор: Daniel J F

10 мар. 2018 г.

Pretty useful, wish there was more practice build in on using terminal!

автор: Seth L

21 сент. 2017 г.

A decent overview for anyone interested in what the topic is and isn't.

автор: Karen A

18 авг. 2017 г.

Good introduction into the tools needed for understanding Data Science.

автор: Yi-Yang L

14 февр. 2017 г.

A little bit simple, but maybe it is enough for an introduction course.

автор: GERARDO A P F

6 апр. 2021 г.

It is hard follow a robotic voice, but the information is clear enough

автор: SFA P

8 нояб. 2020 г.

For beginners, the github version control materials are hard to grasp.