Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 29,852
Рецензии: 6,369

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

LR
7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

SF
14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

4226–4250 из 6,231 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Paulo C M

31 окт. 2016 г.

Good introduction to basics. A few improvements are warranted:

Lessons could be reordered in a more logical progression, particularly when it comes to Git.

Gitbash is not easy or intuitive. A more structured approach (e.g. with cheat sheets, command glossaries, structure diagrams, debugging algorithms etc) would help assimilate it.

автор: Luiz F

22 мая 2016 г.

The course is excelent for people who don't know anything about R, Rstudio, RmarkDown, Git, GiHub and other tools. However, for people who already know a little bit of those technologies, they will find it a little repetitive. Anyhow, the classes are awesome for you to get to learn to use those tools. Congratulations to the team.

автор: UJWAL S S

29 мая 2020 г.

Automated lecture are made using difficult english to understand, it feels like that robot keeps speaking continously without a stop and also the presentations in the videos makes me feel sleepy, if you use facecam that would be better for the learners but not for you i understand that. This course is little far from perfection.

автор: Sandra V

21 сент. 2020 г.

The content was clear and easy the first three weeks. But it was confused to me at 4h week and for the final presentation it was a lack of clear instructions, I was so sad because I had many troubles at the moment of commit, push and fork a file, I had to find external help and I thought I couldn't finish succesful the course

автор: JAVIER D L R A

20 мая 2020 г.

Excellent Course, very simple to understand and concisius. If you wish to learn data science and you dont have any idea about it this this is your course. Only the part of Git I wouldl like to be more explicit, because in one part there is not very clear how we have to create a text file with extension .md using Github. Thanks

автор: Ross B

10 февр. 2020 г.

Course was pretty good but the later lecture videos go really fast and are hard to keep up with. The main problem I had was when it covered R markdown it made no mention of having a LaTex program to create the pdf, I had to spend some time figuring out how to install and get one working in order to knit the markdown file.

автор: Jeff M

6 окт. 2017 г.

What needs to be made clearer is the need to go looking around the internet for help on the Git to Github work. I can see that one taking some time for students to work thru. On the other hand once students go throw the trouble of doing the research and working with the code/commands a strange thing happens - learning!!

автор: Cesar A d S P G

14 авг. 2016 г.

Expectations for simply meeting the baseline learning objectives or to outpoint it aren't exactly clear and there are two monitor strings that are far from being clear (15 minute guide on xyz).

Content and evaluations match in requirements. I learned a lot about softwares and databases in with which I can learn and work.

автор: Chinmoy C P

8 мар. 2020 г.

A high level view but very helpful for someone starting their Data Science journey. Good overall coverage of basics that helps in building a gradual understanding of the subject.

The only reason i haven't rated 5 stars is because there were lot of errors that i came across in the automated diction that need correction.

автор: Muneeb S

15 февр. 2020 г.

Organization of course was good. Sometimes, I felt that speed of the lecture is fast and I had to reduce the speed to 0.75% to understand important concepts. Improvements can be made in the transalation of text by robot, 'e-g' was being translated to EG instead of for example. Overall the content of the course was good

автор: Xuan L

13 янв. 2016 г.

A brief introduction and overview of data science and the specialization from JHU. It provides necessary information and materials for the following courses, but itself does not cover much technique details. Won't take long to accomplish but still necessary if you don't know Git, Github or background of data science.

автор: Jan-Frieder H

12 мая 2018 г.

very basic when you have at least some science background in terms of a Bachelor + almost Master Sc. degree, but good for repetition, Git Bash and Github was completely new to me, at the moment I am not 100% sure for what Github and Git Bash are useful, but I am sure I will figure it out in the upcoming courses :)

автор: VIGNESH R

26 июня 2020 г.

It was good and it helped me to explore github,git,R and Rstudio. The peer assignment was quite good as it was my first peer assignment..But,only thing is that instead of this format(using AI),U can use on-person teaching which will be good and interactive..

I felt sleepy with the crampy female robotic voice

автор: Anthony C

22 июля 2020 г.

Found that the automated lecture didn’t deliver the message as well as a traditional lecture. There was awkward delivery in terms of speech and phrasing from the automated lecture and I found it distracting. But the material was great and I feel prepared to start the rest of the data science specialization

автор: Harris W

29 апр. 2020 г.

The course overall has been helpful in getting started with R and data science as a method of analysis. But the robot voice is extremely difficult to listen to. To the point where I am drifting off because it is so monotone, and sometimes not interpreting the content correctly due to a weird pronunciation.

автор: Matheus d M d A

28 авг. 2018 г.

The course is pretty interesting, but there is not much substantive knowledge here. For that you must keep going to the other courses of the Specialization such as R Programming and the others. There you are going to learn data science in practice. Nevertheless, this is a good introduction to the topic.

автор: Ian M

1 апр. 2017 г.

Good course, that brings goos insights on the basics about data science.

The lectures about Git and GitHub are not so clear - maybe this classes would better fit when the class already have a more advanced knowldge on the course's theme.

Thank you for the quality of the lessons and to make it available.

автор: Antony S B

28 апр. 2017 г.

A good place to start of your entry to Data Science. You get to know what data science is, what are the tools used and get an idea of what can be done and cannot be done. The course even walks you through installation of r, rstudio, and git. It introduces version control system using Github too.

автор: Dawn M K

3 мар. 2020 г.

I really wish there were a few videos with real people in them. That computer voice is annoying, but the material was covered thoroughly, and I used the text option which actually was great. I also think it would benefit students if there was a book or some form of notes they could download.

автор: sachin s

26 дек. 2019 г.

A Good introduction to data analysis theory and tutorials on getting started with Rstudio and git installation and initial usage techniques. Consecutive course to compliment this would be R programming and Data cleansing and exploratory analysis as in John Hopkins Data Science Specialization

автор: Syed M R A

1 июня 2017 г.

Very good stuff relating to Data scientist's entrance in the Data Science field but it should be more descriptive in terms of basic tools and softwares like git and github. Although the stuff is available over the internet but when you listen & see, you get more and more efficiently. Thanks,

автор: Marco L

5 февр. 2017 г.

It was a little to easy and the quizzes were not really necessary. Questions like "What courses are in the Data-Science Specialization?" don't help to controll my learning progress. However for a first, introducing course it was okay. R Programming is way more interesting and challenging <3

автор: Ziaur R

20 дек. 2019 г.

Didnt enjoy the voice on the automated videos, but was faster at reading than watching videos. The document didnt work for the Big data Section and had to watch the video for this. Good introduction and wished I had more questions to practice! Looking forward to R Programming section next"

автор: Glauco G d A

11 янв. 2018 г.

It's a good start point for people who wants to start pursuing a data science career and haven't a statistical background. Explain the basic definitions of research analysis types and shows the very beginning of handful tools like how a git repository works and good editors for R scripts.