Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

4.6
звезд
Оценки: 32,478
Рецензии: 6,929

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

SF
14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

LR
7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

Фильтр по:

6451–6475 из 6,816 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Suhas K

24 апр. 2019 г.

I wish there were more exercises for the project.

автор: Vasilis Z

16 янв. 2017 г.

nothing special, no significant knowledge gained.

автор: James P

28 мая 2016 г.

Later courses are better. This one is quite easy.

автор: patrice j

23 февр. 2016 г.

Good but needs more assistance with the students.

автор: Dwi N R

30 авг. 2020 г.

This Course is great. but the speaker is too bad

автор: Xiaojun L

30 мар. 2017 г.

The git and GitHub section is not very clear....

автор: Rishi R

4 мар. 2017 г.

Too basic, not very informative. Waste of money.

автор: Vitor F M F

9 янв. 2017 г.

The course is too short and I didn't learn much.

автор: Rafael L

4 февр. 2016 г.

Quite basic, but good to set the needed programs

автор: Sagar D

20 июня 2016 г.

Decent for a start. Focuses too much on Github.

автор: An Y

7 февр. 2016 г.

Thought it was too easy to be its own course :)

автор: Nel A G

8 июня 2020 г.

A good high-level introduction to data science

автор: PIYUSH K

3 февр. 2020 г.

just the basic info about R,r stdio and github

автор: Henning

21 янв. 2018 г.

Pretty basic, could go a bit more into detail.

автор: Laurent r

3 мар. 2019 г.

Great course to begin with Rstudio and GitHub

автор: Tharindra P

10 февр. 2020 г.

Great course to start a data science career.

автор: Dinar M

18 окт. 2018 г.

To easy :) but good start for the beginners!

автор: Alexander T

2 авг. 2017 г.

Too basic compared to courses that followed.

автор: 陈辉

23 апр. 2017 г.

作者没有留下详细的文档,泛泛的介绍很难给人留下印象。对于github的练习稍微有些帮助。

автор: 汪豪

7 мар. 2016 г.

i feel i just learn the superficial knowlege

автор: artur b

24 янв. 2016 г.

Very common curse about common data things.

автор: Alok S

21 февр. 2021 г.

Not comfortable with text to speed engine.

автор: Daniel M B

28 нояб. 2016 г.

Demasiado básico para ser un curso formal.

автор: James S

16 мая 2016 г.

Good foundation for the following classes.

автор: LeeKiat N

30 мая 2020 г.

Need deep use of rstudio. Work on project