Chevron Left
Вернуться к Набор инструментальных средств для специалистов по обработке данных

Отзывы учащихся о курсе Набор инструментальных средств для специалистов по обработке данных от партнера Университет Джонса Хопкинса

Оценки: 30,604
Рецензии: 6,522

О курсе

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Основные моменты
Foundational tools
(рецензий: 243)
Introductory course
(рецензий: 1056)

Лучшие рецензии

7 сент. 2017 г.

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

14 апр. 2020 г.

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

Фильтр по:

5101–5125 из 6,383 отзывов о курсе Набор инструментальных средств для специалистов по обработке данных

автор: Hemant J

4 июля 2018 г.

Thanks for helping me out to complete this course successfully

автор: Katherine A A

2 апр. 2018 г.

Excellent for when you are starting in the Data Science world.

автор: Milton S

23 авг. 2017 г.

Too introductory, but useful to start with the right framework

автор: Anthony R

6 июня 2017 г.

This course is a great introduction to the Data Science track.

автор: Ajay M S

16 апр. 2017 г.

Gave me a good introduction to basic Git and GitHub operations

автор: Sara G J

20 апр. 2016 г.

Debería estar mejor explicado como realizar el proyecto final.

автор: Deleted A

10 мар. 2016 г.

Too little information, i think course need to be a bit bigger

автор: B C H K

2 февр. 2016 г.

Good course to start your basic understanding of Data Science.

автор: Vikki G

5 авг. 2020 г.

Very good explanations but quite basic so good for beginners.

автор: Abdul H B

23 июля 2020 г.

Well structured but basic

The robot voice is a little annoying

автор: Panchal R J

22 мая 2020 г.

Nice course for starting with the tools used for Data Science

автор: Jonas M R

2 дек. 2019 г.

Un buen curso para empezar a adentrarse al mundo de los datos

автор: Matias C

17 окт. 2019 г.

Quite useful for learning the basic toolkit for data science.

автор: Sara M

25 янв. 2019 г.

Great introduction to programming software for Dara analytics

автор: Alexandre S N

16 авг. 2018 г.

Great course, but it still can be improved! It is too simple!

автор: ritu r

26 июня 2017 г.

Course was as excellent insight onto the 9 courses to follow.

автор: Pratap N

17 дек. 2016 г.

One of the best course to get into the field of Data Science.

автор: Marion H

21 авг. 2016 г.

Good course for a first contact with the Data Science world !

автор: Faraz R

13 июня 2016 г.

Overall this is a great introductory course to Data sciences.

автор: Thomas H

17 апр. 2016 г.

Good start but not very hard if you already programmed bevore

автор: Kehinde A

19 янв. 2016 г.

Great course, nice ease into the Data Science specialisation.

автор: Kamelia H

6 июля 2020 г.

Some Interfaces especially Gihub has changed , please check.

автор: Christopher H N

11 июня 2020 г.

Some of the material seems to be from an older version of R.

автор: GUIRONG L

22 июня 2019 г.

Great course to start learning knowledge about data science.

автор: Márcio S

11 мар. 2019 г.

É uma ótima introdução, mas faltam mais exercícios práticos.