Chevron Left
Вернуться к A Crash Course in Data Science

Отзывы учащихся о курсе A Crash Course in Data Science от партнера Университет Джонса Хопкинса

4.5
звезд
Оценки: 6,950
Рецензии: 1,315

О курсе

By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials. This is a focused course designed to rapidly get you up to speed on the field of data science. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know. 1. How to describe the role data science plays in various contexts 2. How statistics, machine learning, and software engineering play a role in data science 3. How to describe the structure of a data science project 4. Know the key terms and tools used by data scientists 5. How to identify a successful and an unsuccessful data science project 3. The role of a data science manager Course cover image by r2hox. Creative Commons BY-SA: https://flic.kr/p/gdMuhT...
Основные моменты
Basic course
(рецензий: 76)
Well taught
(рецензий: 48)

Лучшие рецензии

MD

Aug 28, 2016

Is really hard to summarize the potential of Data Science and being clear, but I think that the instructors have done their best, so that we can achieve the most from the Course.\n\nGreat Job!

SJ

Sep 10, 2017

This is a great starter course for data science. My learning assessment is usually how well I can teach it to someone else. I know I have a better understanding now, than I did when I started.

Фильтр по:

776–800 из 1,287 отзывов о курсе A Crash Course in Data Science

автор: Manas K K

Dec 31, 2017

E

автор: Darija J

Nov 19, 2017

G

автор: Debadyuti S

Oct 09, 2017

R

автор: Kari J

Apr 19, 2017

G

автор: scott r

Oct 11, 2016

B

автор: Deleted A

Oct 20, 2015

v

автор: Shihab S

Apr 19, 2020

A high level introduction.

Potentially tying it with some business concepts may be would have made it a bit more useful. While there are some great examples for funded research projects in the medical field, it doesn't quite go into use of data science in gaining business results; One example would be defining success module, where I found myself making a decision tree myself to reflect what those three criteria would translate to in business outcome terms.

Good course still overall. It is free after all so I can understand how may be more in depth conversations could be reserved for later parts of the programs.

автор: Ravi K S

Apr 02, 2018

The course content was fine, but I faced some issues with the Quiz content. I don't know if it was browser issue or the website itself, but on my various attempts, the same correct answers were reported as incorrect, occasionally. I had a hard time completing the Data Scientist's Toolbox quiz - despite providing correct answer in the first attempt, it was reported as wrong, and so, I never chose it again. This way, it is frustrating as well as confusing, breaking my confidence, and making it hard for my brain to memorize and recall the correct concepts.

автор: Tyler S

Aug 05, 2020

This course is a great introduction to the field of data science! The instructors offered some great insight into the underpinnings of data science as a profession without including a plethora of unnecessary detail. Unfortunately, the assessment quizzes were not great (hence the 4-star review)... Other than this, I thought the depth and length of the class was exactly what I needed to begin my pursuit into better understanding (and hopefully eventually working in) this field.

автор: Akua K

Sep 25, 2017

Very informative in a way that I could grasp as a newcomer to Data Science. I had to review a couple of videos to really understand the information, but that was both necessary and worthwhile for a new topic. Relevant examples were also very key especially in the "Defining Success" section, to understand real-world applications. This course is very relevant for my career progression, knowing the nuances and limitations of DS and how to apply in discussion with DS colleagues.

автор: VenkatR

Dec 07, 2017

Some very good concepts for newer folks is in place. A good understanding of supervised and unsupervised learning with examples is of help. The trade off between statistics and Data science was interesting to know. More emphasis on tools will allow us to gather a good view of the execution path. But a good insight on the existing tools and what they can do was helpful to know

автор: Rebecca T

Aug 22, 2018

Very quick and easy to complete. Doesn't go quite as in-depth as I was hoping, but it does say "crash course" right in the title so you can only expect so much. I will be taking more courses on this subject. Overall, even though the information wasn't very detailed, what I learned was very useful, and my research work at my job will improve as a result of taking this course.

автор: Kyle H

May 24, 2020

Good fundamentals and big picture approach, the discussion of specific software tools would be useful to some but not of real interest to me. I do mechanical design and consume data that is developed analyzed and presented by others and this class allows me a deeper appreciation of the challenges of analyzing and presenting data from experiments on the hardware I design.

автор: Rokas N

Feb 20, 2016

The course touches upon most important topics in Data Science but doesn't go deep into the topics:

- Covers most important important topics in Data Science on high level.

- Course works as a "refresher" to follow the course you should know the basics in statistics and modelling. Concepts like parsimonious model would be used with expectation that student already knows it.

автор: Tatsiana A

Apr 25, 2018

Easy, relaxing overview of data science project management. As this is the first class of Executive data science specialization, I give it 4 stars because I believe (or should I say "hope") that someone who is planning to be executive data science manager should know what is statistics or machine learning, or what is the aim of exploratory data analysis.

автор: Nimrod K

Jun 19, 2016

Quite basic material... If you have some technical background you might fund this course not so useful.

However, I think that it does provide the right information for non-technical managers in a simple and comprehensive way.

Personally, I wish it was a bit longer and deeper to feel like I acquired more knowledge to take it to the next level independently.

автор: Eric F

Oct 22, 2019

Pretty thorough for an overview, and it touched upon most concepts that you'd need to approach Data Science in any meaningful capacity.

My only gripe is with the literal last quiz, wherein no questions were asked based upon the materials, but upon additional PDFs attached to the quiz itself.

You cannot link me 4 PDFs and then claim it's a 4 minute quiz.

автор: Reinaldo B N

Mar 19, 2016

I have studied this course as part of the Executive Data Science Specialization. I think this set of four courses meet my objectives by providing a very nice overview on the key points of data science projects. They are good to give a flavor on data science and data science projects helping decide if you want to search for more in depth knowledge.

автор: Kelly F

Apr 10, 2017

Great course. Lot of complicated detail segmented and described in a way that was easy to digest. Thoughts for improvement are with the first few segments. The lessons didn't start with the "why". Why machine learning is used or what problem it solved. I had to google that in order to understand before the course which started with "what" it was.

автор: Dominique W

Jul 27, 2020

I liked the course, but the quizzes were annoying because there are few questions and they include multiple choice question, but because there are few questions and you need to get 80% correct, you aren't allowed to get one question missed. It would be nicer to have more questions so the 80% correct would allow you to miss one question at least.

автор: Marcos A K

May 29, 2017

The course is correct. I would like to go a little deeper in each and every aspect of the course. For example, they explain clearly the difference between statistical analysis and machine learning, although, a more detailed examples of when you only can use statistical analysis and when you only can use machine learning is missed.

автор: Árvai M

Sep 20, 2015

I really enjoyed this course, it gives me lot of new, interesting knowledge about data science, But there are some mistake about good (clean) programming. Please do not use comments, the comments show strange code, do not write big function etc... Clean code book from Uncle Bob helps me a lot of to write clean, maintainable code.

автор: Lorenz F

Jan 10, 2018

good, high level introduction what data science is all about. The section on the structure of a data science project could have gone more into details, maybe following the steps on a specific example. I also missed some insight into the step from the question to the search algorithm. Maybe that's part of the further courses.

автор: Alejandro R

Feb 26, 2019

I learned a lot, the instructors know how to facilitate knowledge but it's not so friendly to people who don't know much about programming, statistics, etc., and there are some grammatical mistakes in the translation to English and some formatting mistakes in some tests. But overall, I'm satisfied with the course.

автор: Thorsteinn A

Oct 01, 2015

Quick scope of data science. I particularly liked the discussion about fad versus fact towards the end of the course. Some questions in quizzes seemed a bit arbitrary. The course delivers what it promises; crash-course with the key ingredients for understanding more about what data science is about