Chevron Left
Вернуться к Data Pipelines with TensorFlow Data Services

Отзывы учащихся о курсе Data Pipelines with TensorFlow Data Services от партнера deeplearning.ai

4.4
звезд
Оценки: 413
Рецензии: 89

О курсе

Bringing a machine learning model into the real world involves a lot more than just modeling. This Specialization will teach you how to navigate various deployment scenarios and use data more effectively to train your model. In this third course, you will: - Perform streamlined ETL tasks using TensorFlow Data Services - Load different datasets and custom feature vectors using TensorFlow Hub and TensorFlow Data Services APIs - Create and use pre-built pipelines for generating highly reproducible I/O pipelines for any dataset - Optimize data pipelines that become a bottleneck in the training process - Publish your own datasets to the TensorFlow Hub library and share standardized data with researchers and developers around the world This Specialization builds upon our TensorFlow in Practice Specialization. If you are new to TensorFlow, we recommend that you take the TensorFlow in Practice Specialization first. To develop a deeper, foundational understanding of how neural networks work, we recommend that you take the Deep Learning Specialization....

Лучшие рецензии

PC
16 апр. 2020 г.

I understand why most of the students are furious about, but content wise, it one of those extremely helpful and important courses in Coursera. Really loved it!

GL
2 мар. 2020 г.

Laurence cares deeply about the students. Not only about what they learn, but that they actually enjoy and learn it. What a fantastic teacher.

Фильтр по:

26–50 из 89 отзывов о курсе Data Pipelines with TensorFlow Data Services

автор: AKSHAY K C

12 апр. 2020 г.

The course was nicely built from basics till the end of publishing our own datasets by the instructor Laurence Moroney. Nice work by his team for coming up with such a good course on Data Pipelines in Tensorflow

автор: swaraj b

11 мая 2020 г.

I was really looking forward to learning efficient data pipelines and that is utterly what I learned here in this course. Best in its class.

автор: Steve Z

19 мая 2020 г.

I learned a lot from this course about how to optimize TensorFlow data pipelines and how to create public datasets. Thank you! - Steve

автор: Nandan P

10 мая 2020 г.

Great Experience of Learning and finally came to know in more depth about Tensorflow and definitely I shall use it for future work.

автор: Enudeme J

10 апр. 2021 г.

Just completing this course and I have already applied the knowledge gained to solve a problem.

This course is quite practical.

автор: Rishabh R

8 июля 2020 г.

First 3 weeks are really nice but for me week 4 was a bit tough with very less explanation

автор: Marc C

18 апр. 2020 г.

Thorough course on Data Services API. Challenging but worthwhile final assignment.

автор: Sheyem K

30 мар. 2020 г.

This seemed very helpful and hands on. I can't wait to try this on my own.

автор: Igor K

30 апр. 2020 г.

Very interesting, but in some places quite difficult. Thank you so much!

автор: Pratap B

24 апр. 2020 г.

covered lot of scenarios that helped to understand the options out there

автор: Pachi C

7 апр. 2020 г.

Very recomendable course, specially the 2 and 3 lessons!!!

автор: Martín C

11 июня 2020 г.

Buen curso, con mucha información, pero muy útil.

автор: Qi D

11 февр. 2020 г.

good,but the last exercise is a bit tricky

автор: amadou d

7 мая 2021 г.

Excellent! Fantastic! Thank You!

автор: Wildson B B L

25 нояб. 2020 г.

This is a really great course!

автор: Avinash S

6 июня 2020 г.

Looking forward to next course

автор: Suresh K M

9 апр. 2020 г.

Incredible sequence of videos!

автор: Sayak P

27 янв. 2020 г.

Very practical!

автор: Jinaxer

25 окт. 2021 г.

Good course!

автор: Nhat t m

29 июня 2020 г.

nice teacher

автор: Bintang F E

29 мая 2021 г.

awesome !!!

автор: Alfian A H

7 мая 2021 г.

Nice course

автор: Muhammad T

28 апр. 2021 г.

good course

автор: Mr. J

15 мая 2020 г.

Astounding

автор: Mochammad G R M

9 мая 2021 г.

Thanks :)