Chevron Left
Вернуться к Прикладные задачи анализа данных

Прикладные задачи анализа данных, Moscow Institute of Physics and Technology

4.4
Оценки: 441
Рецензии: 71

Об этом курсе

Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д. В этом курсе мы разберем прикладные задачи из различных областей анализа данных: анализ текста и информационный поиск, коллаборативная фильтрация и рекомендательные системы, бизнес-аналитика, прогнозирование временных рядов. На их примере вы узнаете, как извлекать признаки из разнородных данных, какие при этом возникают проблемы и как их решать. Вы научитесь сводить задачу заказчика к формальной постановке задачи машинного обучения и поймёте, как проверять качество построенной модели на исторических данных и в онлайн-эксперименте. На каждой задаче мы изучим плюсы и минусы пройденных алгоритмов машинного обучения. Прослушав этот курс, вы познакомитесь с распространенными типами прикладных задач и будете понимать схемы их решения....

Лучшие рецензии

автор: BB

Oct 09, 2017

очень полезный курс для тех, кто хочет освоить прикладные задачи машинного обучения

автор: AY

Nov 30, 2017

Good course however quite small from information perspective

Фильтр по:

Рецензии: 69

автор: Рядовиков Антон Васильевич

Nov 09, 2018

побольше бы ссылок на исследования врем рядов (я пока на 1й неделе)

автор: Любовь Соина

Aug 30, 2018

Очень уж галопом по Европам прошлись по нейросетям - отсюда ценность 2-й недели сомнительна. В остальном - хорошо.

автор: Somov Oleg

Jul 25, 2018

Самый легкий курс за всю специализацию, самое полезное на мой взгляд - анализ временных рядов

автор: Pile Ian

Jul 24, 2018

Задача на последней неделе изрядно попила крови - хотелось бы , чтобы формулировка была более четкой

автор: Павел Сорокин

Jul 23, 2018

В курсе много поверхностных вещей, хотя в целом он полезный

Анализ изображений - очень много болтовни и мало практики, но там хотя бы упражнение полезное и интересное

А вот анализ текстов мне совсем не понравился

Пример и задание поверхностные и не интересные. Вместо того чтобы углубиться в характерные для анализа текстов вещи - лемматизация, стемминг, учет биграмм, стоп-слова, word2vec и т.д., дали оценку обычных классификаторов над какими то признаками, которые, кстати, в этом модуле вообще не обсуждались. А те особенности которые обсуждались - не показаны. В данных примерах почти ничего нового!

За тест по ранжированию в первом модуле недели 4 тоже жирный дизлайк. Там одни и те же ответы переформулированные, при этом все в некотором смысле могут быть правильными. Проблема с этим тестом известна уже более 2х лет судя по форуму, почему бы не переделать?

автор: Самойлов Александр Сергеевич

Jul 05, 2018

Курс вызвал у меня неоднозначные впечатления. Очень понравилась неделя Евгения с временными рядами. В целом в курсе идет краткий обзор всевозможных практических задач, при этом очень мало разборов задач. Было неплохо по каждой теме рассмотреть детально какой-нибудь реальную задачу, со всеми подводными камнями. Конечно я понимаю, что детально разобрать глубокие нейронные сети в компьютерном зрении, с учетом того, что в специализации по-сути их и не было, нереально, но в рекомендательных системах можно было бы разобрать что-то реальное к kaggle или что-нибудь настоящее. Там нет ни одного примера, а в задании люди вешаются от сложности. Нельзя от людей требовать то, чему вы их не учите. pdf лекции и презентации (за исключением временных рядов) в этом курсе подготовлены слабее, чем в остальных курсах специализации.

автор: Anvar Akhiyartdinov

Jun 23, 2018

Поставил 3 за плохую неделю с компьютерным зрением. Нейронные сети должны преподаваться отдельным курсом (слишком большая тема). В дополнение, формулировка задачи по ранжированию тоже ужасная. Пришлось помучиться с заданием. Из хорошего. Неделя по временным рядам классная. Неделя с текстами тоже интересная. В любом случае, спасибо за организацию курса и специализации!

автор: Gleb Shevchenko

Jun 12, 2018

Начало курса было интересным, но откровенно разочаровали практические задания. Вторая половина курса оказалась очень поверхностной и реального опыта не дала

автор: Timur Bikmukhametov

Jun 10, 2018

Неделя с нейронными сетями - тихий ужас.Первая неделя очень полезная, но можно чуть более подробнее объяснить некоторые моменты.Последняя неделя - мощь, задание очень непонятное, убивает время сильно, но позволяет немного поюзать Python.

автор: Ленар Сиразиев

Jun 02, 2018

интересный курс. правда неделя про машинное зрение скорее не про машинное зрение, а про легкое введение в tensorflow, нет ощущения, что по этой теме получаешь знания из programming assignment. а так в целом полезные и итересные задания