Об этом курсе
4.4
Оценки: 457
Рецензии: 74
Специализация
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 26 часа на выполнение

Предполагаемая нагрузка: 10 hours/week...
Доступные языки

Русский

Субтитры: Русский

Приобретаемые навыки

Data ScienceTime SeriesSentiment AnalysisRecommender Systems
Специализация
100% онлайн

100% онлайн

Начните сейчас и учитесь по собственному графику.
Гибкие сроки

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 26 часа на выполнение

Предполагаемая нагрузка: 10 hours/week...
Доступные языки

Русский

Субтитры: Русский

Программа курса: что вы изучите

Неделя
1
Часов на завершение
5 ч. на завершение

Бизнес-задачи

На этой неделе мы разберём две крупные задачи, часто возникающие в бизнес-аналитике. Первая связана с прогнозированием временных рядов; задачи такого типа часто возникают, когда необходимо оценить значение показателя в будущем, основываясь на истории его изменения в прошлом. Такими показателями могут быть спрос на товар, аудитория рекламного баннера, цена акций и т.д. Вторя задача — это анализ поведения пользователей. Класс задач, связанных с анализом пользовательских данных, неизбежно появляется практически в любой сфере бизнеса, подразумевающей работу с клиентами. Как правило, это такие задачи, как привлечение пользователей, работа с аудиторией, прогнозирование оттока и удержание клиентов. ...
Reading
19 видео ((всего 152 мин.)), 6 материалов для самостоятельного изучения, 7 тестов
Video19 видео
Как устроена специализация, и зачем ее проходить3мин
МФТИ1мин
Временные ряды9мин
Автокорреляция6мин
Стационарность6мин
ARMA5мин
ARIMA5мин
Выбор ARIMA и прогнозирование10мин
Анализ остатков8мин
Пример построения прогноза11мин
Регрессионный подход к прогнозированию8мин
Анализ поведения пользователей8мин
Аудиторные метрики: привлечение7мин
Аудиторные метрики: активность9мин
Аудиторные метрики: монетизация6мин
Аудиторные метрики: удержание3мин
Прогнозирование оттока пользователей: Постановка задачи18мин
Прогнозирование оттока пользователей: Построение и оценка модели16мин
Reading6 материала для самостоятельного изучения
МФТИ10мин
Forum&Chat10мин
Пример построения прогноза [ipython notebook]10мин
Слайды к лекциям10мин
Конспект10мин
Слайды к лекциям10мин
Quiz6 практического упражнения
Автокорреляция и стационарность10мин
p, q, P, Q18мин
Прогнозирование временных рядов18мин
Аудиторные показатели: привлечение и активность8мин
Аудиторные показатели: монетизация и удержание6мин
Анализ поведения пользователей10мин
Неделя
2
Часов на завершение
6 ч. на завершение

Анализ медиа

Вторая неделя посвящена вопросам компьютерного зрения. Мы обсудим базовые методы обработки изображений и поговорим про такие задачи, как классификация изображений, распознавание лиц, детекция объектов и семантическая сегментация. Благодаря развитию глубоких нейронных сетей, за последние несколько лет во всех этих задачах достигнут огромный прогресс. Вы узнаете, как на практике пользоваться нейросетевыми библиотеками, и научитесь быстро собирать и размечать большие коллекции изображений....
Reading
11 видео ((всего 106 мин.)), 7 материалов для самостоятельного изучения, 3 тестов
Video11 видео
Задачи компьютерного зрения5мин
"Низкоуровневое" зрение14мин
Линейная фильтрация изображений4мин
Классификация изображений9мин
Задача классификации изображений на практике14мин
Распознавание лиц17мин
Детекция объектов13мин
Стилизация изображений3мин
Распознавание китов5мин
Сбор больших коллекций изображений10мин
Reading7 материала для самостоятельного изучения
Дополнительные материалы10мин
Слайды к лекциям10мин
Конспект10мин
Слайды к лекциям10мин
Конспект10мин
Слайды к лекциям10мин
Конспект10мин
Quiz2 практического упражнения
Компьютерное зрение16мин
Практические задачи компьютерного зрения14мин
Неделя
3
Часов на завершение
6 ч. на завершение

Анализ текстов

Данная неделя посвящена работе с особым видом данных — текстами. Тексты встречаются во многих задачах, и при этом свести их к стандартной матрице с объектами и признаками не так просто. В этом модуле мы изучим основы работы с текстовыми данными, способы генерации признаков на их основе, поговорим о нейросетевых подходах (в частности, word2vec и рекуррентные сети). Также мы обсудим несколько конкретных прикладных задач анализа текстов, среди которых будут анализ тональности и аннотирование....
Reading
13 видео ((всего 80 мин.)), 6 материалов для самостоятельного изучения, 5 тестов
Video13 видео
Предобработка текста6мин
Извлечение признаков из текста5мин
Извлечение признаков из текста - 25мин
Обучение моделей на текстах3мин
word2vec5мин
Рекуррентные сети7мин
Выделение коллокаций5мин
Языковые модели4мин
Анализ тональности текста13мин
Анализ тональности отзывов4мин
Анализ тональности отзывов: продолжение5мин
Аннотирование7мин
Reading6 материала для самостоятельного изучения
Слайды к лекциям10мин
Конспекты к лекциям10мин
Слайды к лекциям10мин
Конспекты к лекциям10мин
Анализ тональности отзывов [ipython notebook]10мин
Слайды к лекциям10мин
Quiz4 практического упражнения
Первичная обработка текстов6мин
Текстовые данные и работа с ними6мин
word2vec и рекуррентные сети6мин
Примеры задач анализа текстов6мин
Неделя
4
Часов на завершение
5 ч. на завершение

Рекомендации и ранжирование

На этой неделе вы познакомитесь с задачами, в которых нужно оценивать "интересность" различных объектов для пользователя - задачей ранжирования, актуальной при построении поиска, и задачей построения рекомендательных систем, возникающей при необходимости посоветовать пользователю некоторый контент (фильмы, музыку, статьи) или товары в интернет-магазине....
Reading
10 видео ((всего 57 мин.)), 5 материалов для самостоятельного изучения, 4 тестов
Video10 видео
Метрики качества ранжирования6мин
Методы ранжирования4мин
Рекомендательные системы4мин
kNN и матричные разложения2мин
Подходы к построению рекомендательных систем11мин
Гибридные рекомендательные системы6мин
Оффлайн оценка качества3мин
Онлайновая оценка качества5мин
Максимизация прибыли магазина7мин
Reading5 материала для самостоятельного изучения
Слайды к лекциям10мин
Конспекты к лекциям10мин
Слайды к лекциям10мин
Финальные титры10мин
Стань ментором специализации10мин
Quiz3 практического упражнения
Ранжирование6мин
Рекомендательные системы-16мин
Рекомендательные системы-210мин
4.4
Рецензии: 74Chevron Right
Формирование карьерного пути

71%

начал новую карьеру, пройдя эти курсы
Карьерные преимущества

80%

получил значимые преимущества в карьере благодаря этому курсу
Продвижение по карьерной лестнице

50%

стал больше зарабатывать или получил повышение

Лучшие рецензии

автор: PKMay 24th 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

автор: ASMar 20th 2017

Наконец-то узнал основы анализа изображений и пощупал руками TensorFlow, прикольно, надеюсь дальше будет только интереснее.)

Преподавателя

Avatar

Антон Слесарев

руководитель группы распознавания образов Яндекс

О Московский физико-технический институт

Московский физико-технический институт (неофициально известный как МФТИ или Физтех) является одним из самых престижных в мире учебных и научно-исследовательских институтов. Он готовит высококвалифицированных специалистов в области теоретической и прикладной физики, прикладной математики, информатики, биотехнологии и смежных дисциплин. Физтех был основан в 1951 году Нобелевской премии лауреатами Петром Капицей, Николаем Семеновым, Львом Ландау и Сергеем Христиановичем. Основой образования в МФТИ является уникальная «система Физтеха»: кропотливое воспитание и отбор самых талантливых абитуриентов, фундаментальное образование высшего класса и раннее вовлечение студентов в реальную научно-исследовательскую работу. Среди выпускников МФТИ есть Нобелевские лауреаты, основатели всемирно известных компаний, известные космонавты, изобретатели, инженеры....

О Яндекс

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

О специализации ''Машинное обучение и анализ данных'

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.