Chevron Left
Вернуться к Convolutional Neural Networks in TensorFlow

Отзывы учащихся о курсе Convolutional Neural Networks in TensorFlow от партнера

Оценки: 7,590

О курсе

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 2 of the TensorFlow Specialization, you will learn advanced techniques to improve the computer vision model you built in Course 1. You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models. The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization....

Лучшие рецензии


11 сент. 2019 г.

great introductory stuff, great way to keep in touch with tensorflow's new tools, and the instructor is absolutely phenomenal. love the enthusiasm and the interactions with andrew are a joy to watch.


12 нояб. 2020 г.

A really good course that builds up the knowledge over the concepts covered in Course 1. All the ideas are applicable in real world scenario and this is what makes the course that much more valuable!

Фильтр по:

426–450 из 1,166 отзывов о курсе Convolutional Neural Networks in TensorFlow

автор: shweta s

16 июля 2019 г.

автор: AMIT S

13 июня 2021 г.

автор: Missaka

28 мар. 2021 г.

автор: Guillermo R

31 окт. 2020 г.

автор: Eduardo J M G

17 сент. 2020 г.

автор: Juan E R

30 июля 2020 г.

автор: MOINUL I

26 июля 2020 г.

автор: Kevin R

29 апр. 2020 г.

автор: ongole s s

21 апр. 2020 г.

автор: Chitresh K

5 февр. 2020 г.

автор: Walid A

16 авг. 2019 г.

автор: Farhodbek S

6 дек. 2021 г.

автор: ROHIT B

26 нояб. 2021 г.

автор: Andrés P

15 авг. 2021 г.

автор: Juan C G R

21 янв. 2021 г.

автор: ANWESH B

11 янв. 2021 г.

автор: Chi-lieh L

16 мар. 2022 г.

автор: PRITAM J

31 июля 2020 г.

автор: Miguel R

1 мая 2020 г.

автор: Thota m s s

8 янв. 2020 г.

автор: kripa s

2 янв. 2020 г.

автор: Shahriyar R

24 окт. 2019 г.

автор: Daniel H

25 сент. 2019 г.

автор: Na

20 мая 2019 г.

автор: Cookie K

5 апр. 2020 г.