Chevron Left
Вернуться к Вычислительная нейробиология

Отзывы учащихся о курсе Вычислительная нейробиология от партнера Вашингтонский университет

4.6
звезд
Оценки: 887
Рецензии: 211

О курсе

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information....

Лучшие рецензии

AG
10 июня 2020 г.

Brilliant course. For a HS student the math was challenging, but the quizzes and assignments were perfect. The tutorials and supplementary materials are super helpful. All in all, I loved it.

CM
14 июня 2017 г.

This course is an excellent introduction to the field of computational neuroscience, with engaging lectures and interesting assignments that make learning the material easy.

Фильтр по:

101–125 из 210 отзывов о курсе Вычислительная нейробиология

автор: Arthur C

25 мая 2017 г.

Great class for both professional in machine learning and computational neuroscience.

автор: José M T

14 апр. 2017 г.

Congratulations !!!. You have managed to explain complex knowledge in a simple way

автор: Richard C

2 сент. 2021 г.

nice!This course has led me into a brand new field of computional neural science!

автор: Faris G

5 апр. 2020 г.

Love it! Very quick, easy to understand course from the University of Washington.

автор: Debapriya H

13 янв. 2020 г.

i like this course very much and its helpful for neuroscience future study of me.

автор: Changjia C

5 янв. 2019 г.

Fantastic course! I enjoy it and love it very much. Thanks Rajesh and Adrienne!

автор: Benjamin S

17 мар. 2018 г.

Awesome course, awesome introduction to the mathematical backgrounds as well!

автор: Vince J S

11 мар. 2018 г.

Exercellent start on the quantatative understanding of Neurons and Networks.

автор: Wei X

12 дек. 2018 г.

Enlightening! After this course, one know how the architecture came from.

автор: Andrés Z

18 апр. 2018 г.

By far one of the most complete MOOCs in the subject. Highly recommended.

автор: Hernan

9 апр. 2019 г.

Muy instructivo y entretenido! Felicitaciones a los autores del mismo.

автор: Dr P T K

13 июля 2020 г.

The teaching is good and easy to understand style of presentations..

автор: Shahbaz K

25 июня 2019 г.

Made it really easy for me to get into this field. So very inspired.

автор: saurabh k p

20 окт. 2018 г.

Amazing Course with difficult challenges , hats off to professors :)

автор: Maxim Y

17 сент. 2017 г.

Thank you for sharing such a wonderful knowledge with the world!

автор: Swaraj K

21 апр. 2018 г.

Very nice course. Interesting Quizzes and excellent instructors

автор: Mehdi H

28 окт. 2017 г.

Thank you for an amazing experience. I really liked the course.

автор: Руслан К

26 февр. 2019 г.

Интересный курс для введения в вычислитетльную нейробиологию)

автор: Anthony J J C

4 мая 2021 г.

Super bueno e interesante, pero requiere de mucha dedicacion

автор: Zhou W

14 июня 2020 г.

Great course for generally view the basic contents of CN

автор: Zejun W

12 окт. 2016 г.

Wonderful course for introduction this field. Good luck!

автор: Deleted A

16 февр. 2017 г.

It was a great experience. Thank you very much you all.

автор: Arish A

2 сент. 2017 г.

One of the best courses on computational neuroscience

автор: 小妮

27 авг. 2019 г.

Great! While hope for more teaching on programming!

автор: Tristan D

13 апр. 2018 г.

Interesting, although sometimes very math-intensive