Chevron Left
Вернуться к Байесовская статистика

Отзывы учащихся о курсе Байесовская статистика от партнера Университет Дьюка

3.8
звезд
Оценки: 760
Рецензии: 246

О курсе

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction. We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

Лучшие рецензии

RR
20 сент. 2017 г.

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH
9 апр. 2018 г.

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Фильтр по:

126–150 из 240 отзывов о курсе Байесовская статистика

автор: Emmanouil K

16 авг. 2017 г.

This is a very interesting topic. Lectures in weeks 3 and 4 could use some work.

автор: Vicken A

28 дек. 2016 г.

Bayesian stats is a broad topic. Learners would benefit from more material.

автор: Raja F Z

23 мая 2020 г.

this Course very informative and bears an applied approach for learning.

автор: Jaime R

8 нояб. 2018 г.

Theorethical backdrop is a bit excessive on an R focused course

автор: Elham L

25 авг. 2020 г.

The material was interesting, yet required more time.

автор: Liew H P

16 янв. 2019 г.

This course is challenging and well-presented!

автор: José M C

22 мар. 2017 г.

Good content but sometimes it gets confusing.

автор: 陈昊

14 нояб. 2017 г.

Harder than former courses but great!

автор: George G

6 мая 2017 г.

The classes are good.

автор: sohini m

27 окт. 2017 г.

It was nice

автор: Tanika M

8 сент. 2020 г.

I don't have much new to add here - like many others, I found the course to be a sharp departure in teaching style and workload from the previous 3 courses, and found unanswered threads on the forums from one and two years ago. Students have been leaving feedback in this vein for years as well but it does not seem to have prompted any adjustments. The last two weeks of reading are especially intense and feel very crammed in, with the videos not explaining it with the care that the first few courses do.With all that said, it is not impossible to get through this course (clearly, as many of us have finished it), but you're left on your own for much of it. On the bright side the course project is not a huge jump up in difficulty as the readings may suggest, but is pretty much in line in terms of difficulty compared to the previous three projects.

автор: Haixu L

19 янв. 2018 г.

The material is interesting. However some of the points are not presented in a way that I can understand.

The course is less coherent than the previous ones.

This course gave me an impression that the materials are not well organized. Basically, the course organizers present a lot of concepts and materials to you without background introductions. I know there are a lot to cover in 5 weeks. The organizers should think this through about how to present a lot of information in a short period of time. Maybe put the less important information in a lecture notes or something could be better.

автор: Sander t C

22 июня 2020 г.

This course was way harder than the three that came before. It feels as if courses 1 to 3 did not prepare me for this one at all. The lecturers throw in a lot of formulas that they just expect us to understand with ease. Whereas the first three courses explained everything in great detail, even the simplest things, this course assumes you immediately understand everything they throw at you. The quizzes also ask for small details mentioned during 2 seconds of one of the many videos. Still, the course is doable if you push through and apply what you learn in the Rstudio-assignments.

автор: Sandro H

29 нояб. 2020 г.

I wanted to rate this 3.5 but because I could not will lean towards 3 stars. The main reasons being that the course could have been organized in such as way as to introduce Bayesian statistics, rather than bombard the student with hefty math formulas. Instead, it could have reduced the material by half and focused on understanding WHY and WHEN Bayesian can be helpful for certain cases. An emphasis on providing more practical examples could have helped me more clearly understand the mechanisms of priors, model averaging, etc.

автор: Jeff M

9 мая 2019 г.

Overall I think there are better options available for learning bayesian statistics. The pacing and structure of the course both felt off to me, spending too much time on some things (conjugacy in particular) and breezing past many other things too quickly (particularly numerical methods). I also thought that it would have been more helpful to learn to perform many of the analyses from scratch so that they could be better understood, rather than relying so heavily on the accompanying statsR package.

автор: schlies

31 мая 2019 г.

It seems like this course contains good information, but there's a huge gap in the material as taught by some of the instructors. It seems like one of the instructors in particular assumes you're already familiar with material that's not covered in the rest of the course. These parts of the lectures rehearse math and code in a very formulaic way which conveys almost no intuition or understanding of the subject matter. However, the labs a pretty good.

автор: Bo L

8 дек. 2017 г.

This course is different from the first 3 courses in this specialization. I only recommend this course to people who have sound knowledge in calculus and some background knowledge in Bayesian Statistics. Personally, the pace of the videos is fast and the instructors use very technical terms. Although the course is not intended to give in-depth explanation into Baysian statistics, how the content is set up tend to be confusing.

автор: amoulay

23 июля 2021 г.

This was course #4 of the series. The previous 3 courses were fun. Not so for Bayesian stat. While working out the quizzes and project were at reach, the concept behind several aspects of bayesian remain obscure, at least for me. Instructors are wonderful, they know their stuff, but something was missing as to delivering bayesian stat. Not their fault: bayesian looks like it's a hard core topic to understand and master.

автор: Thomas J H

6 авг. 2017 г.

This course has a much steeper learning curve than the first three, and goes from theory to examples in action rather than vice versa. I think the Professors involved are super-smart and more than just qualified, but the teaching method is a noted departure from the first three courses in this series. Think this would work better as two courses. Slow things down a bit, and give more R exercises and examples.

автор: Andreas Z

27 мар. 2018 г.

This introduction to Bayesian statistics familiarises you with the fundamental concepts. The difficulty is that the material covered is non-trivial and probably cannot be squeezed into the time allocated. Is is very difficult to follow the lectures and not getting lost. Thus, you need to take lot of time and maybe complement this course additional ones in order to understand the material and profit from it.

автор: Etienne T

20 нояб. 2017 г.

This course delved too deep in the math that were not always explained as good as the other courses in this specialization. Really liked the prof from the other courses (Mine), she really explained well... Didn't like the teaching style of the prof in this course unfortunately. Didn't have a good reference book that we could refer to like the other courses. This was really a pain.

автор: Benjamin E

12 июля 2020 г.

Interesting concepts and some good expositions of subject matter. However, too much of the course is confusing, and there is little attempt to explain intuition behind concepts. In particular, various options for Bayesian regression modelling are introduced, but there is no material about how to decide which tools to use when.

автор: Erik B

26 февр. 2017 г.

After 3 great courses in this specialization, this one was disappointing. The content just isn't explained well in the videos. The Labs were fine. I'm sorry but the course seemed rushed, and it isn't great marketing for the Bayesian approach. As a consequence, I am now not sure if I want to do the capstone......

автор: Elvis S R

10 сент. 2019 г.

I don't think the level of this course is in continuity with the previous three of the specialization. The first average of the classes are as usual, but then the topics become harder and equation-oriented. Less examples are developed and I wasn't able to learn everything as it happened in the previous courses.

автор: Dgo D

22 мая 2017 г.

I consider that you need to change the scope of this last course. A book or a reading material will help to better understand the concepts.

I'm conscient that Bayesian statistics is more mathematics intensive, but you should find a way to make this course friendlier for beginner students in Bayesian statistics.