Chevron Left
Вернуться к Байесовская статистика

Отзывы учащихся о курсе Байесовская статистика от партнера Университет Дьюка

3.9
Оценки: 603
Рецензии: 185

О курсе

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction. We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

Лучшие рецензии

RR

Sep 21, 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH

Apr 10, 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Фильтр по:

101–125 из 178 отзывов о курсе Байесовская статистика

автор: Francisco M

Nov 09, 2019

The course is very interesting, but the jump from the previous course is too large. From calculating probabilities by hand and understanding the odds involved, to integrate distributions is too abrupt and not explained in detail.

автор: Stefan H

Mar 16, 2019

Find it hard to follow the lectures. The labs and supplement material is good though.

автор: Santiago S

Jul 15, 2018

Se trata de explicar términos matemáticamente complejos de una manera muy general y vaga dificultando el entendimiento y el aprendizaje del tema.

автор: Sophie G

Jul 25, 2018

Really hard to follow and finish, especially compared to the other classes in this specialization.

The concepts might be more complex, but the way they're taught also adds to the difficulty, in my opinion.

автор: Pedro M E

Mar 15, 2018

Course is much harder to follow than previous courses. Due to change of instructors, the notation used wasn't always introduced before and is not explained. Feels rushed if you hadn't previous notions of the subject.

автор: Thomas J H

Aug 07, 2017

This course has a much steeper learning curve than the first three, and goes from theory to examples in action rather than vice versa. I think the Professors involved are super-smart and more than just qualified, but the teaching method is a noted departure from the first three courses in this series. Think this would work better as two courses. Slow things down a bit, and give more R exercises and examples.

автор: Kshitij T

Jan 04, 2018

tough course.

автор: Tony M

Oct 23, 2016

I found some of the instructional videos a bit confusing. It was difficult to understand the underlying methodology of some of the concepts explained. I believe the instructors assumed the students had a more rigorous understanding of the underlying calculus than was suggested for this course.

автор: Yang X

Dec 04, 2016

Good course, but need more details.

автор: Andreas Z

Mar 27, 2018

This introduction to Bayesian statistics familiarises you with the fundamental concepts. The difficulty is that the material covered is non-trivial and probably cannot be squeezed into the time allocated. Is is very difficult to follow the lectures and not getting lost. Thus, you need to take lot of time and maybe complement this course additional ones in order to understand the material and profit from it.

автор: Artur A B

Sep 02, 2017

This course might better serve the students by having more intuitive examples shared before the quiz/programming exercises. I think the topic deserves more attention (2 weeks instead of 1) or perhaps offered as part of a series of bayesian courses in a different certification.

автор: Ganesh H

Aug 17, 2017

I felt the course ramps up from the basics way too quickly. I didn't like the pacing in the course compared to other courses in the same specialization, although I did learn a lot.

автор: Robert M M

Sep 27, 2017

Slides poor compared to 3 earlier modules and instructor not as engaging. However, the labs are good.

автор: Luv S

May 03, 2018

Explanations not simplified as compared to the other courses in the specialisation. Very difficult to comprehend. Instructor should take more time to explain the fundamentals.

автор: Vivian Y Q

Oct 13, 2017

huge jump

автор: Erik B

Feb 26, 2017

After 3 great courses in this specialization, this one was disappointing. The content just isn't explained well in the videos. The Labs were fine. I'm sorry but the course seemed rushed, and it isn't great marketing for the Bayesian approach. As a consequence, I am now not sure if I want to do the capstone......

автор: Gustavo S B

Sep 17, 2017

I would recommend to include more weeks; slow down and go deeper

автор: Dgo D

May 22, 2017

I consider that you need to change the scope of this last course. A book or a reading material will help to better understand the concepts.

I'm conscient that Bayesian statistics is more mathematics intensive, but you should find a way to make this course friendlier for beginner students in Bayesian statistics.

автор: Shaurya J S

Mar 20, 2018

Not as good as other courses in this specialization. Most of the times the focus was to teach the method of performing a Bayesian Statistical process rather than teaching the actual concept.

автор: Etienne T

Nov 20, 2017

This course delved too deep in the math that were not always explained as good as the other courses in this specialization. Really liked the prof from the other courses (Mine), she really explained well... Didn't like the teaching style of the prof in this course unfortunately. Didn't have a good reference book that we could refer to like the other courses. This was really a pain.

автор: Xinyi L

Aug 15, 2017

not very interested

автор: Haixu L

Jan 19, 2018

The material is interesting. However some of the points are not presented in a way that I can understand.

The course is less coherent than the previous ones.

This course gave me an impression that the materials are not well organized. Basically, the course organizers present a lot of concepts and materials to you without background introductions. I know there are a lot to cover in 5 weeks. The organizers should think this through about how to present a lot of information in a short period of time. Maybe put the less important information in a lecture notes or something could be better.

автор: Christopher C

Feb 12, 2018

Very heavy information very quickly otherwise - great

автор: Bo L

Dec 08, 2017

This course is different from the first 3 courses in this specialization. I only recommend this course to people who have sound knowledge in calculus and some background knowledge in Bayesian Statistics. Personally, the pace of the videos is fast and the instructors use very technical terms. Although the course is not intended to give in-depth explanation into Baysian statistics, how the content is set up tend to be confusing.

автор: Ashley J

Jun 20, 2017

Good breadth of useful information and well intentioned lectures, but this course really needs a companion text and practice questions outside of the quizzes to reach the level of effectiveness of the other courses in the specialization.