Вернуться к Bayesian Statistics: From Concept to Data Analysis

4.6

звезд

Оценки: 1,972

•

Рецензии: 517

This course introduces the Bayesian approach to statistics, starting with the concept of probability and moving to the analysis of data. We will learn about the philosophy of the Bayesian approach as well as how to implement it for common types of data. We will compare the Bayesian approach to the more commonly-taught Frequentist approach, and see some of the benefits of the Bayesian approach. In particular, the Bayesian approach allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. For computing, you have the choice of using Microsoft Excel or the open-source, freely available statistical package R, with equivalent content for both options. The lectures provide some of the basic mathematical development as well as explanations of philosophy and interpretation. Completion of this course will give you an understanding of the concepts of the Bayesian approach, understanding the key differences between Bayesian and Frequentist approaches, and the ability to do basic data analyses....

Sep 01, 2017

Good intro to Bayesian Statistics. Covers the basic concepts. Workload is reasonable and quizzes/exercises are helpful. Could include more exercises and additional backgroung/future reading materials.

Jun 27, 2018

Great course. The content moves at a nice pace and the videos are really good to follow. The Quizzes are also set at a good level. You can't pass this course unless you have understood the material.

Фильтр по:

автор: Musa J

•Aug 11, 2017

Herbert Lee's Tests are fun (Best!) to learn during the test! Lectures are succinct; Format of writing on the glass towards you and then flipped was right & original. Went on to try Kaggle problems independently. For usable feedback need tiny bit more on Poisson, Gamma, non conjugate intuitively & darker shirts as background.

автор: Labmem

•Sep 11, 2016

Good course. This course is quite challenging for people who don't major in math or physics. However, it isn't so difficult to understand as the post half of this course has a lot in common. In my experience, understanding the concept of priors and posterior estimation is the core of this course. Have fun learning this course.

автор: Victor A

•Mar 01, 2017

It's a great course, there is a lot of information and it might seem at times overwhelming, but it's organized nicely and prof. Lee has a very comfortable time explaining all the concepts. A few more examples would have made this course easier, but that does not mean it would have been better. It's as good as it gets

автор: John G

•Oct 30, 2017

Prof Lee derived the formulas in an upbeat way, which helped me learn. I'd suggest putting the actual lectures into pdf for later reference, like is done for supplementary material. Homework assignments were challenging and educational. You might suggest a review of prob distributions as pre-requisite.

автор: William P

•Aug 03, 2018

Fantastic first course. The only concern I have is with the software choices. I have neither R nor Excel, but was able to easily use google Sheets. It might be worth mentioning to students that this is an option. There is even a stats package that claims parity with one of the listed packages for excel.

автор: Guido W R

•Oct 05, 2016

Very nice course that in my opinion nicely fits between Bolstad and Gelman in difficulty (talking in popular Bayesian Data Analysis books). Herbert Lee does a very good job at building one's intuition and understanding in the general Bayesian inference. Good starting point for moving on with Bayes.

автор: Oaní d S d C

•Apr 22, 2018

Amazing. Simple, fast, dense, very well taught. I loved the professor, his commentaries and way to explain the contents. Thought the exercises were OK, maybe simpler than I taught but the comments in them helped me a lot to understand the topics. 10/10, a new and better way to teach! Very useful.

автор: Derek H

•Jun 12, 2019

Good to learn or re-learn the basics of statistic and probability, and as a foundation for learning maximum likelihood methods (which are much more useful later on). The material is digestible, to the point, and the quizzes are helpful in checking your understanding and information retention.

автор: Devesh S

•Jun 30, 2017

A well organized course, learned important concepts in statistics and probability that will definitely help anyone wanting to specialize in machine learning or take up data science. Clear and concise explanation of theory focusing on application that is adequately tested in the exams.

автор: Manuel M S

•Sep 30, 2019

An excellent course on the basics of Bayesian approach to statistics. It has excellent explanations, from the concept to applications and allows gaining understanding both on the basic underlying ideas, as well as a deeper insight on Bayesian methodologies. I definitely recommend it!

автор: Xiaomeng W

•Dec 13, 2019

I've reviewed probabilities and basic Bayesian methods in this course. The quizzes have good explanation and the additional reading materials are helpful. I'm learning the next course: Techniques and models, which is also great (except that we don't have free access to the quizzes).

автор: Sujith N

•Feb 24, 2018

As a primer to Bayesian Statistics, this course covers the basics at a brisk pace. No time is wasted in explaining the basics of Probability theory; which I have always found, at best, to be distracting in the other similar courses I have taken. Thank you, Herbert Lee and Coursera.

автор: liqul

•Apr 28, 2019

There are books and courses out there teaching you how to use machine learning tools to solve real problems. But there aren't so many like this starting from the Bayesian way. Besides, this is a good entry point for me to read the book "Pattern Recognition and Machine Learning".

автор: Angelo A d M F

•Jan 09, 2017

Excellent introductory course to bayesian statistics. I'd like to thank Professor Lee, University of Santa Cruz, Coursera and all supporting staff for the opportunity. I'd enjoy if you provided intermediate and advanced courses on bayesian statistics that covers more topics.

автор: Marcin K

•Sep 23, 2017

I took this course due to my interest in machine learning and graphical models. I like the approach and execution. I recommend it for anyony interrested in statistical inference. Some topics require looking up external sources, like wikipedia, but it is not an issue.

автор: Keun-Hwi L

•Mar 18, 2017

This class is very much an intro, so if you're looking for advanced topics you it might not be challenging. But this is a really good intro. The lectures are good and the supplemented material is great. I wish there was more R, but I'm very happy with the class.

автор: Clive S H

•Jan 15, 2018

Interesting, challenging, informative, entertaining, Herbie Lee is an excellent presenter of a very well prepared introduction to what seems to be a more rational and coherent approach to extracting, understanding and evaluating quantative information from data

автор: Ying L

•Jul 03, 2017

It's a great course to understand the fundamentals of the Bayesian Statistics. The easy quiz which meant not to deter the students could be improved a bit. For serious learning, reviewing the questions in honor sections and the supplemental materials is a must.

автор: Alysa

•Jun 04, 2017

This is a short course and it was a great introduction to Bayesian inference. Lessons went through both theory and application. I found the videos easy to follow and that they prepared me for the quizzes. I also really valued learning how to use R.

автор: Kelvin P

•Apr 04, 2017

I really like the assignments, they are very well designed and helped a lot in consolidating my understanding of the topic. In my opinion, these assignments are the reason why coursera courses are better than the video lectures available elsewhere.

автор: Francisco C

•Sep 22, 2017

Excellent introduction to Bayesian inference. Dr. Lee struck an exceptional balance between presenting concepts and ideas with self-learning through the homework quizzes. I look forward to learning more analysis techniques in subsequent courses!

автор: BaoYiping

•Sep 06, 2016

it's very helpful for me to understand the Bayesian statistics. things are clearly stated and the quiz are good. Many thanks! It's better to have a further course on the Monte Carlo. It's better if the regression can be talked more in details.

автор: Ruoxiao S

•Aug 15, 2019

This class is pretty helpful for the beginners and the instructor has a clear organization of the lecture. The Quizzes are also a good way to know what you have mastered. I have a better and deeper understanding of the Bayesian Statistics now.

автор: Nicholas P

•Jan 13, 2018

Highly informative. Prof. Herbert Lee is a great professor providing very thorough notes and material for the Bayesian paradigm of Statistics. I would highly recommend this to any who are interested. It is also a great introduction to using R.

автор: Michail L

•Aug 04, 2019

It was an amazing course. Prof. Lee is an excellent teacher, the lectures were very interesting and illuminating, and the problems challenging and based on the material discussed. Highly recommended to get a basic idea of Bayesian statistics.

- Искусственный интеллект для каждого
- Введение в TensorFlow
- Нейронные сети и глубокое обучение
- Алгоритмы, часть 1
- Алгоритмы, часть 2
- Машинное обучение
- Машинное обучение с использованием Python
- Машинное обучение с использованием Sas Viya
- Программирование на языке R
- Введение в программирование на MATLAB
- Анализ данных с Python
- Основы AWS: введение в облачные приложения
- Основы Google Cloud Platform
- Обеспечение надежности веб-сервисов
- Разговорный английский язык на профессиональном уровне
- Наука благополучия
- Научитесь учиться
- Финансовые рынки
- Проверка гипотез в здравоохранении
- Основы повседневного руководства

- Глубокое обучение
- Python для всех
- Наука о данных
- Прикладная наука о данных с Python
- Основы бизнеса
- Разработка архитектуры на платформе Google Cloud
- Инженерия данных на платформе Google Cloud
- От Excel до MySQL
- Продвинутое машинное обучение
- Математика в машинном обучении
- Беспилотные автомобили
- Блокчейн для организаций
- Бизнес-аналитика
- Навыки Excel для бизнеса
- Цифровой маркетинг
- Статистический анализ в здравоохранении на языке R
- Основы иммунологии
- Анатомия
- Управление инновациями и дизайн-мышление
- Основы позитивной психологии

- ИТ-поддержка Google
- Специалист IBM по привлечению клиентов
- Наука о данных IBM
- Прикладное управление проектами
- Профессиональная сертификация IBM в области прикладного ИИ
- Машинное обучение для Analytics
- Пространственный анализ данных и визуализация
- Проектирование и управление в строительстве
- Педагогический дизайн