Вернуться к Bayesian Statistics: From Concept to Data Analysis

звезд

Оценки: 2,678

•

Рецензии: 698

This course introduces the Bayesian approach to statistics, starting with the concept of probability and moving to the analysis of data. We will learn about the philosophy of the Bayesian approach as well as how to implement it for common types of data. We will compare the Bayesian approach to the more commonly-taught Frequentist approach, and see some of the benefits of the Bayesian approach. In particular, the Bayesian approach allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. For computing, you have the choice of using Microsoft Excel or the open-source, freely available statistical package R, with equivalent content for both options. The lectures provide some of the basic mathematical development as well as explanations of philosophy and interpretation. Completion of this course will give you an understanding of the concepts of the Bayesian approach, understanding the key differences between Bayesian and Frequentist approaches, and the ability to do basic data analyses....

GS

31 авг. 2017 г.

Good intro to Bayesian Statistics. Covers the basic concepts. Workload is reasonable and quizzes/exercises are helpful. Could include more exercises and additional backgroung/future reading materials.

JB

16 окт. 2020 г.

An excellent course with some good hands on exercises in both R and excel. Not for the faint of heart mathematically speaking, assumes a competent understanding of statistics and probability going in

Фильтр по:

автор: cuguilke

•30 окт. 2019 г.

I was hoping to get more intuition on bayesian statistics, but I couldn't. Hence, I think I am gonna forget what I have learned in a very very short time.

автор: Lukman A S

•4 янв. 2020 г.

The course only gives a lot of equations and formulas without explaining why this process should be done

автор: Jayant G

•11 янв. 2018 г.

I had a great experience. It was lot more in-depth than I originally anticipated. In the tech world, Machine Learning is a buzz word and Bayesian based algorithms / models are the key and this introduces one to the fundamentals of Bayesian statistics. I was totally hooked on to this and the quizzes with real world examples really helped understand and apply the concepts. This course definitely requires maths background to be able to complete. Course provides lot of helpful materials and a pace that can be adopted based on your time and ability. Really looking forward for another deep dive in the near future.

автор: Gary S

•19 дек. 2016 г.

Great intro to Bayesian Statistics. The math gets complex but the professor illustrates with examples to help with understanding. The exercises are generally similar to the examples in the lectures and honestly not as hard as they could've been. The course is only 4 weeks and moves pretty fast. Although I scored well, I may take the course again to help make sure all the details and concepts fully sank in.

I'm hungry for a deeper dive into the topic. I hope there is a follow up course in the future.

автор: Anupam K

•16 мар. 2018 г.

Extremely useful course. The way concepts are taught is amazing. However, if you are like me, you will have problems following the lectures at the speed at which the professor proceeds. It's a minor 'subjective' issue. The second issue is that sometimes, the equations in the quizzes may appear in the form of "cryptic codes", for the lack of better words, and you'll know it if you face it. A change of browser solves the problem, for me a shift from Chrome to Safari did the trick! Hope this helps.

автор: kpb

•15 февр. 2018 г.

A good introduction to the concepts conveyed by revealing the equations and expressions on a whiteboard. Minimal work with data and programming - much less of this than other Coursera classes on the same topics. Also unlike other Coursera classes on the same topic, the quiz answers/hints are useful and contain the relevant equations or R commands - not merely "correct" or "you should not have chosen this answer." I found this very helpful for self learning and confirming solution approach.

автор: Francesco B

•18 февр. 2020 г.

Good introduction to the Bayesian approach to inference.

As an introduction, it doesn't go very deep on some interesting arguments and it leaves out Hierarchical Modeling and estimations through Monte Carlo Markov Chain, but it would have been unfeasible in such a short time.

Finally, I would like to point out that mathematical strictness doesn't mean that the course is too technical: you have just to go through some calculations and review some concepts in order to fully understand them.

автор: Melvyn B

•2 июня 2017 г.

Professor Herbert Lee is world-class. The masterful and thoroughly outstanding presentation, organization and content of this activity are among the best of the best in any subject at any institution, whether on campus or otherwise -- more remarkably so for any senior undergraduate to graduate level mathematics activity, and most especially so in the broad field of Bayesian analysis. In summary: Extremely well-done and hats off to Professor Lee. I am thoroughly impressed.

автор: Jeff N

•30 мар. 2017 г.

As a long time frequentist, I occasionally run into problems that are very awkward to fit into the frequentist paradigm. I was aware at a high level that the Bayesian approach could be applied more naturally. Unfortunately, I was unable to "get it" simply be reading a book on the subject. This course made it very approachable. Professor Lee showed us the difficult math (tough integrals) behind it and how we can apply the results of that math in Excel or R

автор: Rob H

•17 апр. 2020 г.

Really enjoyed the course. Coming from an engineering background but little statistics study for 15 years, this course provided a great explanation of the concepts and terminology with really good quizzes and and an introduction to R. There are still some terms I have seen elsewhere that weren't covered, but it may well be that they aren't specifically related to Bayesian Statistics, or were more advanced. I look forward to taking the follow-on course.

автор: Johan D R P

•2 дек. 2019 г.

This course has been highly useful to understand how hypothesis testing works, starting from experimental design using prior distributions and assumptions to posterior statistics based on data. In my college courses it was always assumed that the parameters for the distribution were fixed, so, having a way to correct them through the information hidden in the data allows to overcome those assumptions and have a clearer perspective of the data behavior.

автор: Фирсанова В И

•25 мар. 2021 г.

The course is great! I am a computational linguist without strong math background, however, there were no problems in completing this course. The course is provided with supplementary materials that really helped me to fill my gaps in math. The course, however, is quite challenging (well, for me it was), and I had a great fun trying to complete some quizes several times. I hope that soon I will be able to implement my knowledge on real tasks.

автор: Georgy M

•10 янв. 2019 г.

I found the course very well made and beautifully presented. The material is systematic, the more advanced topics based on the previously learned information without gaps and any need to study additional sources. The examples and the tests provide additional insights. Thank you, prof. Herbert Lee, for this great course!

Was able to do the course with Python instead of R, though it got a bit complicated on the last topic (regression).

автор: Vasilios D

•28 авг. 2018 г.

This course strikes a perfect balance between not being too simple or too slow on one hand, and offering an easily accessible introduction to many central topic of Bayesian statistics on the other.

I think that good knowledge of basic probability theory and one-variable calculus is necessary for getting the maximum out of this course. This, however, is strictly due to the probabilistic underpinnings of the Bayesian theory.

автор: Sara T

•22 сент. 2019 г.

I really enjoyed working through this course. It is a great introduction to Bayesian statistics. People with a little probability and statistics background can easily follow this course. I personally prefer to have more assignments for this course to better learn the concepts. Professor Lee is a great instructor, and he speaks slowly. The length of each video is short, and I like it a lot because you can finish it quickly.

автор: Zhu L

•25 нояб. 2017 г.

A very well-organized course. Not a hard one, but one with sufficient quizzes to make sure you understand every concept by solving problems.

Another thing I like about this course, is that I had to actively write a lot of codes in Python and Matlab when doing the exercises(due to my familiarity with these two), although the course teaches a little bit R and Excel programming. This is a very effective way of teaching.

автор: Giuseppe F

•22 авг. 2019 г.

great course for those who have an understanding of the frequentist approach and would like to dip their toes in the bayesian approach. pace is right and the content is interesting throughout. Given the basic math requirements, many derivations are omitted (especially towards the end of the course, which might feel a bit rushed) but I feel the course gives the tools to explore should one want to fill the gaps in.

автор: Davide V

•20 янв. 2017 г.

Short but sweet. This course is a good introduction to the subject. I particularly liked the instructor and the design of the tests, which are really complementary to the learning material and are really helpful to put in practice the somewhat abstract theory. The supplementary material is also well done. It would be nice to have a course book to follow though as referring to videos is not always easy.

автор: Sinkovics K

•1 мая 2020 г.

This is a wonderful course in Statistics that I would highly recommend to everyone who wants to take a learning path into the world of Bayesian inference and refresh their knowledge of numerous statistics concepts involved. The lectures provide excellent in-detail explanations, and additional reading material fill in the gaps if some of the concepts or derivations weren't shown in the lecture in full.

автор: Michał K

•24 окт. 2017 г.

Excellent course. For such broad discipline I'm sure it was difficult to choose most important material to fit 4-week course, yet professor did it perfectly. I'd love to see this course in Python, but I guess I can't have everything ;) I'd also love see some examples of using probabilistic programming packages, like Stan or PyMC3 in more real-life problems - I would give 6/5 stars for it!

автор: Paulina S

•10 мар. 2017 г.

This is my first course on Coursera and I am delighted by the construction, how it was led by the instructor and what I learned. Quizzez are great, I spent on some quite a bit of time, but I feel they really checked if I understand the concepts and calculations. The questions during the video are also an excellent idea to check if you follow. All in all I am very happy I took this course!

автор: Kostyantyn T

•3 авг. 2019 г.

I really enjoyed this course, the videos are fairly short with focus on exercises and there is a nice narrative throughout the course. Sometimes I needed to watch videos again because explanations were too fast for me to follow in real time, but I definitely enjoyed presentation style of Prof. Herbert Lee. Will be following the course up with "Techniques and Models" to learn about MCMC.

автор: Alberto S

•29 июня 2017 г.

Followed the course in order to fill a gap I had in statistics knowledge, as I'm very interested in machine learning - deep learning, and always came upon things as MLE without really knowing well what they were talking all about. Really a very good course to get an understanding! Well explained, though maybe you'll need to brush up your Algebra and Calculus a bit to be able to follow...

автор: MaoJie T

•19 нояб. 2019 г.

It's a fantastic course, which guides me to know what is Bayesian statistics. Before joining this course, I try my best to learn Bayesian Statistics but it's failed. However, I really grasped some key points and knowledge of Bayesian Statistics and I will join the following course about Bayesian Statistics to get more. Thanks for the professor. I am appreciated for it.

автор: Matteo V

•26 июня 2017 г.

Great course that introduces the fundamentals of Bayesian Statistics. Useful for becoming familiar enough with the ideas to use in basic analysis provided you have some experience with frequentist statistical methods. For my studies, this course allowed me access to the Bayesian statistical material that is often encountered in phylogenetic analysis in bioinformatics.

- Поиск цели и смысла жизни
- Понимание медицинских исследований
- Японский язык для начинающих
- Введение в облачные вычисления
- Основы самоосознанности
- Основы финансов
- Машинное обучение
- Машинное обучение с использованием Sas Viya
- Наука благополучия
- COVID-19: отслеживание контактов
- Искусственный интеллект для каждого
- Финансовые рынки
- Введение в психологию
- Начало работы с AWS
- Международный маркетинг
- C++
- Прогнозная аналитика и интеллектуальный анализ данных
- Получение навыков обучения от Калифорнийского университета в Сан-Диего
- Программирование для всех от Мичиганского университета
- Программирование на языке R от Университета Джонса Хопкинса
- Курс CPI для CBRS от Google

- Обработка естественного языка (NLP)
- Искусственный интеллект в медицине
- Мастер слова: письмо и редактирование
- Моделирование инфекционных заболеваний
- Американское произношение английского языка
- Автоматизация тестирования программного обеспечения
- Глубокое обучение
- Python для всех
- Наука о данных
- Основы бизнеса
- Навыки Excel для бизнеса
- Наука о данных с Python
- Финансы для каждого
- Навыки общения для инженеров
- Курс по продажам
- Управление карьерным ростом
- Бизнес-аналитика от Уортонской школы бизнеса
- Позитивная психология от Университета Пенсильвании
- Машинное обучение от Вашингтонского университета
- Графический дизайн от Калифорнийского института искусств

- Профессиональные сертификаты
- Сертификаты MasterTrack
- ИТ-поддержка Google
- Наука о данных IBM
- Инженерия данных от Google Cloud
- Прикладной искусственный интеллект от IBM
- Облачная архитектура от Google Cloud
- Аналитик по кибербезопасности от IBM
- ИТ-автоматизация с помощью Python от Google
- Специалист по работе с мейнфреймами на IBM z/OS
- Прикладное управление проектами от Калифорнийского университета в Ирвайне
- Сертификат по педагогическому дизайну
- Сертификат по проектированию и управлению в строительстве
- Сертификат по большим данным
- Сертификат по машинному обучению для аналитики
- Сертификат по управлению инновациями и предпринимательству
- Сертификат по экологии и устойчивому развитию
- Сертификат по социальной работе
- Сертификат по искусственному интеллекту и машинному обучению

- Степени в области компьютерных наук
- Степени в области бизнеса
- Степени в области общественного здравоохранения
- Степени в области науки о данных
- Степени бакалавра
- Бакалавриат в области компьютерных наук
- Магистр в области электротехнического проектирования
- Степень бакалавра
- Магистр в области управления
- Магистр компьютерных наук
- Магистр общественного здравоохранения
- Степень магистра в области бухгалтерского учета
- Магистр компьютерных и информационных технологий
- Диплом магистра делового администрирования онлайн
- Магистр прикладной науки о данных
- Международная программа MBA
- Магистр в области инноваций и предпринимательской деятельности
- Магистр компьютерных наук в области науки о данных
- Магистр в области компьютерных наук
- Магистр здравоохранения