Об этом курсе

Недавно просмотрено: 25,474
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
100% онлайн
Начните сейчас и учитесь по собственному графику.
Гибкие сроки
Назначьте сроки сдачи в соответствии со своим графиком.
Промежуточный уровень
Прибл. 3 часа на выполнение
Английский
Субтитры: Английский

Приобретаемые навыки

Reformer ModelsNeural Machine TranslationChatterbotT5+BERT ModelsAttention Models
Сертификат, ссылками на который можно делиться с другими людьми
Получите сертификат по завершении
100% онлайн
Начните сейчас и учитесь по собственному графику.
Гибкие сроки
Назначьте сроки сдачи в соответствии со своим графиком.
Промежуточный уровень
Прибл. 3 часа на выполнение
Английский
Субтитры: Английский

от партнера

Логотип deeplearning.ai

deeplearning.ai

Программа курса: что вы изучите

Неделя
1

Неделя 1

2 ч. на завершение

Neural Machine Translation

2 ч. на завершение
8 видео ((всего 35 мин.))
8 видео
12мин
24мин
36мин
43мин
57мин
62мин
72мин
85мин
Неделя
2

Неделя 2

2 ч. на завершение

Text Summarization

2 ч. на завершение
7 видео ((всего 32 мин.))
7 видео
13мин
26мин
35мин
43мин
54мин
64мин
73мин

Специализация Обработка текстов, написанных на естественных языках: общие сведения

Natural Language Processing (NLP) uses algorithms to understand and manipulate human language. This technology is one of the most broadly applied areas of machine learning. As AI continues to expand, so will the demand for professionals skilled at building models that analyze speech and language, uncover contextual patterns, and produce insights from text and audio. By the end of this Specialization, you will be ready to design NLP applications that perform question-answering and sentiment analysis, create tools to translate languages and summarize text, and even build chatbots. These and other NLP applications are going to be at the forefront of the coming transformation to an AI-powered future. This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper....
Обработка текстов, написанных на естественных языках

Часто задаваемые вопросы

  • Доступ к лекциям и заданиям предоставляется в зависимости от типа регистрации. Если вы проходите курс в режиме слушателя, то получите бесплатный доступ к большинству материалов курса. Чтобы открыть оцениваемые задания и возможность получить сертификат, необходимо будет приобрести прохождение с сертификатом. Это можно сделать во время прохождения в режиме слушателя или после него. Если вы не видите варианта 'Режим слушателя'.

    • Курс может не предлагаться в режиме слушателя. Попробуйте бесплатную пробную версию или подайте заявку на финансовую помощь.
    • Курс предлагаться в режиме 'Полный курс, без сертификата'. В нем можно просматривать все материалы, выполнять обязательные задания и получить итоговую оценку. Приобрести дополнительно прохождение с сертификатом в таком случае нельзя.
  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

  • Когда вы оформите подписку, начнется семидневный бесплатный пробный период, в течение которого подписку можно отменить без штрафа. По истечении этого срока вы не сможете вернуть средства, но сможете отменить подписку в любой момент. Ознакомьтесь с нашей политикой возврата средств.

  • Да, Coursera предоставляет финансовую помощь учащимся, которые не могут оплатить обучение. Чтобы подать заявление, перейдите по ссылке "Финансовая помощь" слева под кнопкой "Зарегистрироваться". Заполните форму заявления. Если его примут, вы получите уведомление. Обратите внимание: этот шаг необходимо выполнить для каждого курса специализации, в том числе для дипломного проекта. Подробнее

Остались вопросы? Посетите Центр поддержки учащихся.