Chevron Left
Вернуться к Apply Generative Adversarial Networks (GANs)

Отзывы учащихся о курсе Apply Generative Adversarial Networks (GANs) от партнера deeplearning.ai

4.8
звезд
Оценки: 438

О курсе

In this course, you will: - Explore the applications of GANs and examine them wrt data augmentation, privacy, and anonymity - Leverage the image-to-image translation framework and identify applications to modalities beyond images - Implement Pix2Pix, a paired image-to-image translation GAN, to adapt satellite images into map routes (and vice versa) - Compare paired image-to-image translation to unpaired image-to-image translation and identify how their key difference necessitates different GAN architectures - Implement CycleGAN, an unpaired image-to-image translation model, to adapt horses to zebras (and vice versa) with two GANs in one The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research....

Лучшие рецензии

UD

5 дек. 2020 г.

I really liked the exposure to preparing various loss functions in paired and non-paired GANs, introduction to other applications, and many great changes to improve the quality of the networks!

MM

23 янв. 2021 г.

GANs are awesome, solving many real-world problems. Especially unsupervised things are cool. Instructors are great and to the point regarding theoretical and practical aspects. Thankyou!

Фильтр по:

26–50 из 92 отзывов о курсе Apply Generative Adversarial Networks (GANs)

автор: Rishav S

7 нояб. 2020 г.

автор: Pavel K

3 февр. 2021 г.

автор: Mikhail P

20 нояб. 2020 г.

автор: José A C C

17 янв. 2021 г.

автор: Rushirajsinh P

16 апр. 2021 г.

автор: Lambertus d G

18 февр. 2021 г.

автор: 大内竜馬

10 мар. 2021 г.

автор: Yiqiao Y

5 янв. 2021 г.

автор: Angelos K

31 окт. 2020 г.

автор: Andrey R

7 дек. 2020 г.

автор: Vaseekaran V

24 дек. 2021 г.

автор: 昭輝江

24 янв. 2022 г.

автор: Moustafa S

31 окт. 2020 г.

автор: Jaekoo K

11 апр. 2021 г.

автор: Paul J L I

31 янв. 2021 г.

автор: Akshai S

17 янв. 2021 г.

автор: Stefan S

30 окт. 2020 г.

автор: Anri L

24 дек. 2021 г.

автор: Arkady A

8 февр. 2021 г.

автор: Dhritiman S

8 дек. 2020 г.

автор: Serge T

18 нояб. 2020 г.

автор: Antoreep J

24 апр. 2021 г.

автор: Matthew B E R

28 нояб. 2020 г.

автор: Asaad M A A

13 сент. 2021 г.

автор: Hoda F

8 сент. 2022 г.