Об этом курсе
Недавно просмотрено: 2,485

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 9 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 2-5 hours/week...

Английский

Субтитры: Английский

100% онлайн

Начните сейчас и учитесь по собственному графику.

Гибкие сроки

Назначьте сроки сдачи в соответствии со своим графиком.

Промежуточный уровень

Прибл. 9 часа на выполнение

Предполагаемая нагрузка: 4 weeks of study, 2-5 hours/week...

Английский

Субтитры: Английский

Программа курса: что вы изучите

Неделя
1
2 ч. на завершение

Solving the Business Problems

In this module, you will explain why comparing healthcare providers with respect to quality can be beneficial, and what types of metrics and reporting mechanisms can drive quality improvement. You'll recognize the importance of making quality comparisons fairer with risk adjustment and be able to defend this methodology to healthcare providers by stating the importance of clinical and non-clinical adjustment variables, and the importance of high-quality data. You will distinguish the important conceptual steps of performing risk-adjustment; and be able to express the serious nature of medical errors within the US healthcare system, and communicate to stakeholders that reliable performance measures and associated interventions are available to help solve this tremendous problem. You will distinguish the traits that help categorize people into the small group of super-utilizers and summarize how this population can be identified and evaluated. You'll inform healthcare managers how healthcare fraud differs from other types of fraud by illustrating various schemes that fraudsters use to expropriate resources. You will discuss analytical methods that can be applied to healthcare data systems to identify potential fraud schemes.

...
8 видео ((всего 61 мин.)), 1 материал для самостоятельного изучения, 1 тест
8 видео
Module 1 Introduction3мин
Provider Profiling10мин
How to Make Fairer Comparisons Using Risk Adjustment6мин
How Risk Adjustment is Performed8мин
Patient Safety: Measuring Adverse Events7мин
Super-Utilizers of Health Resources10мин
Fraud Detection10мин
1 материал для самостоятельного изучения
A Note From UC Davis10мин
1 практическое упражнение
Module 1 Quiz30мин
Неделя
2
2 ч. на завершение

Algorithms and "Groupers"

In this module, you will define clinical identification algorithms, identify how data are transformed by algorithm rules, and articulate why some data types are more or less reliable than others when constructing the algorithms. You will also review some quality measures that have NQF endorsement and that are commonly used among health care organizations. You will discuss how groupers can help you analyze a large sample of claims or clinical data. You'll access open source groupers online, and prepare an analytical plan to map codes to more general and usable diagnosis and procedure categories. You will also prepare an analytical plan to map codes to more general and usable analytical categories as well as prepare a value statement for various commercial groupers to inform analytic teams what benefits they can gain from these commercial tools in comparison to the licensing and implementation costs.

...
7 видео ((всего 51 мин.)), 1 тест
7 видео
Clinical Identification Algorithms (CIA)9мин
HEDIS and AHRQ Quality Measures7мин
Analytical Groupers6мин
Open Source Groupers - Grouping Diagnoses and Procedures7мин
Open Source Groupers - Comorbidity, Patient Risk, and Drugs8мин
Commercial Groupers10мин
1 практическое упражнение
Module 2 Quiz30мин
Неделя
3
3 ч. на завершение

ETL (Extract, Transform, and Load)

In this module, you will describe logical processes used by database and statistical programmers to extract, transform, and load (ETL) data into data structures required for solving medical problems. You will also harmonize data from multiple sources and prepare integrated data files for analysis.

...
6 видео ((всего 49 мин.)), 1 тест
6 видео
Analytical Processes and Planning10мин
Data Mining and Predictive Modeling - Part 16мин
Data Mining and Predictive Modeling - Part 26мин
Extracting Data for Analysis10мин
Transforming Data for Analytical Structures11мин
1 практическое упражнение
Module 3 Quiz30мин
Неделя
4
5 ч. на завершение

From Data to Knowledge

In this module, you will describe to an analytical team how risk stratification can categorize patients who might have specific needs or problems. You'll list and explain the meaning of the steps when performing risk stratification. You will apply some analytical concepts such as groupers to large samples of Medicare data, also use the data dictionaries and codebooks to demonstrate why understanding the source and purpose of data is so critical. You will articulate what is meant by the general phase -- “Context matters when analyzing and interpreting healthcare data.” You will also communicate specific questions and ideas that will help you and others on your analytical team understand the meaning of your data.

...
7 видео ((всего 49 мин.)), 1 материал для самостоятельного изучения, 2 тестов
7 видео
Solving Analytical Problems with Risk Stratification8мин
Risk Stratification: Variables, Groupers, Predictors8мин
Risk Stratification: Model Creation/Evaluation and Deployment of Strata9мин
Medicare Claims Data - Source and Documentation8мин
Final Tips to Help Understand and Interpret Healthcare Data8мин
Course Summary2мин
1 материал для самостоятельного изучения
Welcome to Peer Review Assignments!10мин
1 практическое упражнение
Module 4 Quiz30мин

Преподаватели

Avatar

Brian Paciotti

Healthcare Data Scientist
Research IT

О Калифорнийский университет в Девисе

UC Davis, one of the nation’s top-ranked research universities, is a global leader in agriculture, veterinary medicine, sustainability, environmental and biological sciences, and technology. With four colleges and six professional schools, UC Davis and its students and alumni are known for their academic excellence, meaningful public service and profound international impact....

О специализации ''Health Information Literacy for Data Analytics'

This Specialization is intended for data and technology professionals with no previous healthcare experience who are seeking an industry change to work with healthcare data. Through four courses, you will identify the types, sources, and challenges of healthcare data along with methods for selecting and preparing data for analysis. You will examine the range of healthcare data sources and compare terminology, including administrative, clinical, insurance claims, patient-reported and external data. You will complete a series of hands-on assignments to model data and to evaluate questions of efficiency and effectiveness in healthcare. This Specialization will prepare you to be able to transform raw healthcare data into actionable information....
Health Information Literacy for Data Analytics

Часто задаваемые вопросы

  • Зарегистрировавшись на сертификацию, вы получите доступ ко всем видео, тестам и заданиям по программированию (если они предусмотрены). Задания по взаимной оценке сокурсниками можно сдавать и проверять только после начала сессии. Если вы проходите курс без оплаты, некоторые задания могут быть недоступны.

  • Записавшись на курс, вы получите доступ ко всем курсам в специализации, а также возможность получить сертификат о его прохождении. После успешного прохождения курса на странице ваших достижений появится электронный сертификат. Оттуда его можно распечатать или прикрепить к профилю LinkedIn. Просто ознакомиться с содержанием курса можно бесплатно.

Остались вопросы? Посетите Центр поддержки учащихся.